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ABSTRACT 

Ari Singer-Freeman  

Climate Risk in American Financial Institutions. 

(Under the direction of Dr. Yasser Boualam) 

 

Climate change will inevitably lead some companies to default on their debt, putting 

stress on banks and financial institutions. To ensure financial stability, financial institutions must 

prepare for climate risk appropriately. Although the first step to mitigating climate risk is 

quantifying that risk, researchers have not come to a consensus on the magnitude of climate-

related credit risk. This thesis builds on prior research by taking a bottom-up approach to 

modeling climate risk in the American financial system. I find that risk is concentrated in certain 

companies, industries, regions, and financial institutions. Although these findings do not provide 

evidence that there is systematic climate risk in the American financial system, they do indicate 

that certain parts of the financial system are vulnerable and warrant regulation. 
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1. INTRODUCTION 

Climate change poses a severe threat to ecosystems, cities, and economies. In certain 

areas, extreme weather events like tropical cyclones, droughts, and heatwaves have already 

become stronger and more prevalent than they were previously due to climate change (Bouwer, 

2018). Between 1988 and 2017, the average number of natural catastrophes per year rose 26%, 

and the cost of those catastrophes rose by 35.7% (Munich Re, 2019). Scientists expect the effects 

of climate change to worsen in the future. Jevrejeva et al.et al. (2018) found that the damage 

caused by climate change-induced flooding could slow global Gross Domestic Product (GDP) 

growth by 2.8% per year by 2100. The United States (U.S.) is not immune from economic 

climate risk: for each 1°C increase in global temperature, Hsiang et al. (2017) predicts the U.S.’ 

GDP growth will shrink by 1.2%. Therefore, climate change is a serious risk to economic 

productivity in the U.S. 

Climate-based economic risk could lead to financial instability. The Governor of the 

Bank of England, Mark Carney, noted in his seminal 2015 address that “Climate change will 

threaten financial resilience and longer-term prosperity” (Carney, 2015, p. 16), creating risk for 

financial institutions. Most of this risk will either stem from climate change’s physical threats to 

operations or from phasing out greenhouse gas (GHG) emissions. Because financial institutions 

typically do not have expansive physical operations and do not emit large quantities of GHGs, 

their exposure to climate risk stems from their investment portfolios. Financial institutions invest 

in portfolio companies with varying degrees of climate exposure, primarily through debt 

products. If enough of those debt investments were to go into default, financial institutions would 

be unable to provide capital to those who need it, creating financial instability. Therefore, 
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widespread default on bank loans is the most likely way that climate change will threaten 

financial stability, as shown in Figure 1. 

For climate risk to threaten financial institutions, climate risk must materially threaten 

portfolio companies, and portfolio companies must fail to mitigate this risk themselves. Even if 

portfolio companies fail to mitigate climate risk, lending to companies with high exposure to 

climate risk is only problematic if financial institutions do not appropriately account for the 

riskiness of their investments. Financial institutions lend to companies with very high levels of 

existing debt (highly leveraged companies), which are more likely to go into default than 

companies with lower levels of debt. However, financial institutions understand that lending to 

highly levered companies is risky and account for that risk by making fewer loans and holding 

more capital in reserve against those loans, so there is no systematic issue. Climate risk may pose 

a threat to financial stability if regulators fail to impose restrictions on financial institutions’ 

climate risk exposures and financial institutions fail to address this risk independently.  

In this introduction, I describe how the current financial system is vulnerable to climate-

induced financial instability or fragility. I outline the climate risks facing portfolio companies, 

those companies’ failure to mitigate climate risks, the lack of federal regulatory oversight on 

financial climate risk, and financial institutions’ failure to voluntarily address climate risk. 
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Figure 1  

Pathway from Climate Change to Financial Risk 

 

Note. Risk for financial institutions comes from their portfolio companies. If portfolio companies 

default on their debt, financial institutions will suffer losses and will not be able to provide 

capital markets with liquidity. This failure could result in financial instability. 

1.1 Generic Climate Risks 

The first step in determining whether climate change creates the potential for financial 

instability is determining whether it poses material financial risks to financial institutions’ 

portfolio companies. Climate change poses two types of generic risk to corporations and the 

broader economy: physical risks and transition risks. Physical risk includes the direct impact of 
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climate change on ecosystems and environments, whereas transition risk is risk to corporations 

or the broader economy that is created by humans’ attempts to mitigate physical risks. 

1.1.1 Physical Risk 

Although the physical impacts of climate change on ecosystems and environments will be 

wide-reaching and varied (Carleton & Hsiang, 2016), the impact of natural disasters, lowered 

labor productivity, and lowered agricultural productivity on overall economic productivity are 

the most well researched (e.g., TCFD, 2017; U.S. Commodity Futures Trading Commission, 

2020). 

As the climate changes, natural disasters such as hurricanes, wildfires, and heatwaves 

become more severe. In their wake, these events create economic destruction that poses a risk to 

corporations. In 2017, Hurricane Harvey caused roughly $90Bn of damage, $67Bn of which 

Frame et al. (2020) attribute to climate change. Abatzoglou and Williams (2016) found that 

climate change is increasing aridity in the Western U.S., doubling the area susceptible to 

wildfires, a trend that will continue. Fifteen of the 20 worst wildfires in California’s history have 

occurred since the year 2000, and 10 of those have been since 2015 (Governor Newsom’s Strike 

Force, 2019). Dinan (2017) projects that the average yearly damage from hurricanes will 

increase from $28Bn in 2015 to $63Bn by 2075. 

Lower labor productivity is another type of material physical risk. Zhang et al. (2018) 

found that higher temperatures lead to lower labor productivity in both physically and mentally 

intensive work and predict that unabetted temperature rise could shrink China’s GDP by 12.8% 

by 2100. Given that temperatures have risen more quickly in the U.S. than in the rest of the 

world since 1970 (EPA, 2016), labor productivity is also likely to decrease domestically. 

https://link.springer.com/article/10.1007/s10584-020-02692-8
http://www.rescuethatfrog.com/wp-content/uploads/2017/09/Dinan-2017.pdf
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Therefore, portfolio companies are exposed to physical risk through lower workforce 

productivity. 

The final well-research physical risk to portfolio companies is lowered agricultural 

productivity. As climates change, places where crops currently grow will degrade until they are 

no longer arable. Hsiang et al. (2017) forecast a 9.1% decrease in crop yields for each degree 

Celsius of global temperature rise in the U.S. Because basic agricultural commodities are inputs 

for many other sectors, decreased agricultural productivity will have widespread ramifications 

outside of the agricultural sector. Increases in agricultural commodity prices will likely hurt all 

sectors that rely on agricultural products. 

In sum, the costs of increasingly severe and frequent natural disasters, lowered labor 

productivity, and lowered agricultural productivity caused by climate change create physical risk 

for corporations. These risks could result in lower operating profit margins and large one-time 

losses, which might cause portfolio companies to go into default. However, not only do portfolio 

companies face physical risks from climate change but also transition risks stemming from 

actions taken with the goal of decreasing the physical effects of climate change. 

1.1.2 Transition Risk 

Transition risks stem from attempts to mitigate physical risk. The first and most 

significant type of transition risk comes from government regulation of GHG emissions. 

Regulations can include carbon taxes, clean energy subsidies, or a combination of the two (Chen 

& Hu, 2018). The two most popular types of carbon tax are cap and trade, in which companies 

receive a carbon allocation they can sell on the open market, and a simple tax on emissions. 

Sixty-two different jurisdictions, including California, British Columbia, and the European 

Union have instituted some form of regulation on carbon emissions, but generally, these 



 

6 
 

regulations only apply to certain industries and under-tax carbon relative to its true cost 

(Skovgaard et al., 2019). However, even with underpriced carbon regulation systems, emission 

regulation can be costly for portfolio companies. For example, although California’s cap-and-

trade system only applies to 450 large electric power plants, industrial plants, and fuel 

distributors, it has charged companies $12.5Bn in taxes since 2013, which equates to roughly 

$28.8MM per firm (Center for Climate and Energy Solutions, 2021). 

Another prominent form of transition risk comes from technology stranding assets. 

Assets become stranded when decreases in demand for a product render the assets used to 

produce that product worthless. In the case of climate change, a large shift in the relative prices 

of fossil fuels and renewable energy could make fossil fuel production economically non-viable 

and strand associated assets. For example, if there were a drastic decrease in the cost of storing 

energy that caused renewable energy to become cheaper than fossil fuels, oil extraction assets 

would become worthless. Lithium-ion batteries are used to store renewable energy, and their cost 

is a large preventative factor from more widespread adoption of renewable energy. The price of 

lithium-ion batteries fell by 80% between 2010 and 2017, and prices will likely continue to fall, 

creating a serious risk for fossil fuel producers (Deloitte Center for Energy Solutions, 2019). In 

fact, Linquiti and Cogswell (2016) find that if fossil fuels were to become significantly more 

expensive relative to renewables, the value of fossil fuel reserves would drop 63%, or $185 

trillion. Therefore, stranded assets due to technological advancements create an important form 

of transition risk. 

One other less prominent but noteworthy form of transition risk is legal risk. As 

environmental groups work to control industrial contributions to emissions, they will seek to 

hold companies liable for environmental harm through legal actions. For example, the city of 
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Baltimore is currently suing fossil fuel companies, including BP, ExxonMobil, and Shell, 

because the companies knew their products would lead to climate change and continued to sell 

them (Hersher et al., 2021). According to the Sabin Center at Columbia University Law School 

(2020), at least 1,561 climate related lawsuits have been filed in the U.S., demonstrating the scale 

of future liabilities companies may face from high emissions. Government organizations have 

been slow to define the limits of companies’ liability for climate-related harms that they cause, 

which increases the risk of facing litigation. 

Regardless of whether the global community takes action to mitigate the physical risks 

described above (and in the process creates transition risk), corporations will face losses due to 

climate change. Additionally, since physical risk affects real capital, those with large physical 

operations are likely to face more physical risk than those with less expansive operations. 

Similarly, since transition risk results from attempts to mitigate physical risk (accomplished by 

decreasing GHG emissions), those that emit high levels of GHGs are more likely to face 

transition risk than other companies. Therefore, the companies to which financial institutions 

lend face material climate risk. It will only be by effectively mitigating these risks that financial 

institutions will avoid instability. 

1.2 Portfolio Companies’ Responses to Risk 

If portfolio companies mitigate risk appropriately and financial markets price risk 

efficiently, financial institutions’ exposure to climate risk should not lead to financial instability. 

If portfolio companies are able to protect themselves against climate risk, climate change will not 

cause them to default on their debt. Similarly, if financial markets price loans fairly, financial 

institutions’ existing risk mitigation strategies should also control climate risk. However, poor 
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planning at the portfolio company level and the market’s mispricing of assets creates potential 

climate risk for financial institutions. 

Portfolio companies do not appear to be preparing adequately for climate change, 

meaning that climate change could cause those companies to default on their debt. Of the 

corporations that disclosed their climate risk mitigation practices to the Carbon Disclosure 

Project in 2016, only 46% reported dedicating any additional funds to addressing risks associated 

with climate change (Goldstein et al., 2018). Only 3.3% of companies in industries that rely on 

natural resources such as rivers or farmland had taken action to preserve those assets. 

Furthermore, whereas the scientific consensus projects losses to be on the scale of trillions of 

dollars, companies have only been planning for stranded assets on the scale of billions of dollars 

(Goldstein et al., 2018). Taken together, it appears that corporations are not taking sufficient 

action to address risks associated with climate change, and climate change could devalue the 

investment vehicles that rely on those companies. However, if the government regulates financial 

institutions’ exposure to investment vehicles with high climate risk, it will eliminate systemic 

financial risk. 

1.3 Regulation of Financial Risk 

Stress testing in the U.S. has largely been defined by standards set by the Basel 

Committee on Banking Supervision (BCBS) and enhanced by the Dodd-Frank Wall Street 

Reform and Consumer Protection Act of 2010 (Basel Committee on Banking Supervision, 2019; 

H.R.4173 - Dodd-Frank Wall Street Reform and Consumer Protection Act, 2010). Founded in 

1974 to standardize global financial institution regulation, the BCBS is best known for its capital 

adequacy regulation guidelines, the Basel I, II, and III. The first iteration of those guidelines was 

issued in response to the Latin American debt crisis of the 1980’s. Although the Basel guidelines 
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are not binding (each nation’s central bank or appropriate authority must issue their own 

directives), all 45 member institutions agree to implement them (The Bank of International 

Settlements, n.d.). 

The Comprehensive Capital Analysis and Review is currently a scenario-based exercise, 

or “stress test,” that tests the ability of American bank holding companies with consolidated 

assets of over $100MM to withstand adverse economic conditions. Financial institutions with 

between $100MM and $250MM in assets must complete the exercise biannually, and financial 

institutions with over $250MM in assets must complete the exercise annually. The stress test 

includes both a quantitative and a qualitative exercise. If a financial institution fails either 

exercise, it cannot distribute capital to its shareholders via stock buybacks or dividends. The 

Federal Reserve can also issue a “conditional non-objection,” in which case the financial 

institution must make some changes to its capital planning before being able to distribute capital. 

In the quantitative exercise of the stress test, the Federal Reserve provides financial 

institutions a realistic baseline and hypothetical distressed economic scenario defined by 28 

variables, including six measures of economic activity, four measures of asset prices, six 

measures of interest rates, and three macroeconomic variables by country bloc for four different 

blocs (Board of Governors of the Federal Reserve System, 2021a). The financial institutions 

must model how these variables will impact certain capital reserve ratios (i.e., what percentage 

of its assets are liquid and could be used to pay off depositors), as defined by the Basel III 

guidelines. To pass, a financial institution must project maintaining minimum capital reserve 

ratios both in the baseline and severely distressed scenarios. To project these ratios in the 

distressed scenario, financial institutions model changes in portfolio probabilities of default 

(PD), exposures at default (EAD), and loss given default (LGD) which yield projected losses. 
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With the losses, the institutions can model their new balance sheet, and therefore their reserve 

ratios.  

The capital reserve ratios are defined by a measure of liquid capital (e.g., Common 

Equity Tier 1, Tier 1 Capital, etc.) divided by a measure of total assets (either risk weighted or 

unweighted). Essentially, these ratios measure what percentage of an institution’s loans could go 

into default without putting that institution into insolvency. The current CCAR relies on five 

capital reserve ratios: Common Equity Tier 1 (CET1), tier 1 risk-based capital, total risk-based 

capital, tier 1 leverage, and Supplementary Leverage Ratio (SLR) (Board of Governors of the 

Federal Reserve System, 2020). CET1, tier 1 risk-based capital, and total capital are classified as 

“Capital Ratios” and are different from the “Leverage Ratios” (i.e., SLR and tier 1 leverage ratio) 

in that they weigh riskier assets more heavily than leverage ratios. For example, a mortgage may 

be weighted 100%, whereas a Treasury Bond may not count at all. However, even for the Capital 

Ratios, risk weightings are solely based on measures of financial risk and no other forms of risk 

such as climate risk.  

The qualitative exercise assesses the adequacy of the underlying analyses and processes 

that are used in the quantitative portion of the stress test. It measures the adequacy of six areas of 

capital planning: governance, risk management, internal controls, capital policy, scenario design, 

and projection methodology. Typically, the Federal Reserve will not issue an objection unless an 

institution’s capital planning is inadequate in multiple categories. However, after an institution 

has been subject to the qualitative assessment for four years and passes in the fourth year, it is no 

longer required to complete the qualitative portion of the assessment. Because of this rule, the 

exercise for 2020 was the last for which any financial institution could receive objections on 

qualitative grounds. Therefore, no part of the existing framework for regulating financial 
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institutions’ exposures to financial risk includes monitoring their exposure to climate risk. 

Although it is possible that capital reserve ratios set under the current system are large enough to 

also account for climate risk, this is not clear and warrants further investigation. If it turns out 

that these existing reserve ratios do not account for climate risk, climate change would create the 

potential for financial instability unless financial institutions moderate their own risk. 

1.4 Financial Institutions’ Responses to Risk 

If financial institutions were adequately moderating their exposure to climate risk, one 

would expect an inverse correlation between asset prices and climate risk. Because investors 

demand compensation for taking on risk, this inverse correlation would mean that financial 

institutions accurately view assets that are more vulnerable to climate change as riskier than 

average assets. Unfortunately, although asset prices are somewhat inversely correlated with 

climate risk (Bolton & Kacperczyk, 2020), they are not correlated to the degree one would 

expect given the severity of climate risk, meaning that the full risks of climate change are not 

priced in (Griffin et al., 2019; Hong et al., 2020). The market’s failure to efficiently price in 

climate risk may mean that financial institutions are inefficiently pricing climate risk, which 

would introduce systemic risk in the financial system.  

1.5 Summary 

Climate change poses material physical and transition risks to companies and the broader 

economy. Because companies are not fully mitigating climate risk, their securities also pose a 

climate risk to those who hold them. The government is not regulating the investments that 

financial institutions make in securities that pass climate risk on to their owners, and the financial 

institutions themselves may not be efficiently accounting for climate risk. This lack of risk 

mitigation increases the possibility of financial instability.  
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To successfully address this potential for financial instability, governments and 

researchers must accurately calculate the magnitude of climate risk to which financial institutions 

are exposed. This thesis presents a model by which this could be accomplished. The paper 

proceeds as follows. Section 2 outlines the approaches that exist in the literature for measuring 

financial climate risk. Section 3 provides an overview of the datasets that I use and their 

manipulations for use in this thesis. It also covers the theoretical model that I use to calculate 

risk. Section 4 reports results, Section 5 discusses the results, and I conclude my paper in Section 

6. 
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2. LITERATURE REVIEW 

Given the possibility of significant climate risk in the financial system, regulators, 

multinational organizations, and academics have proposed principles for measuring the 

seriousness of this risk. Most existing literature focuses on a three-tiered, top-down approach to 

modeling risk with a climate scenario, macroeconomic model, and microeconomic model (e.g., 

Allen et al., 2020; Bingler & Senni, 2020; NGFS, 2020; Vermeulen et al., 2018), that is shown in 

Figure 2. In the top-down approach, the macroeconomic model takes inputs from the climate 

scenario to predict economic performance, and the microeconomic model translates the 

macroeconomic performance into implications for companies. Bottom-up approaches are also 

based on climate scenarios. However, they measure financial institution exposure on a loan-by-

loan basis and are becoming increasingly popular for their applications. If a regulator wants to 

model the direct impact of a policy on companies and not the general macroeconomic impact, a 

bottom-up approach is preferable to a top-down approach. To understand either approach, it is 

important to understand the climate scenarios on which the assessments are based. 

2.1 Climate Scenarios 

Climate scenarios define the real-world situations on which the financial climate risk 

assessment is based. Climate scenarios are typically based around a set of climate change 

mitigation goals and governments’ regulatory actions to reach those goals. The policies enacted 

to reach these goals define the transition risk that companies will face and influence the rate and 

timing of climate change, indirectly determining levels of physical risk.  
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 Common policy action scenarios are designed to avoid the most severe physical effects 

of climate change by limiting global temperature rise to 2°C (e.g., Allen et al., 2020; Eis & 

Schafer, 2019; NGFS, 2020; Vermeulen et al., 2018), meeting the nationally determined 

contributions defined in the Paris Climate Agreement (e.g., TCFD, 2017), or doing nothing (e.g., 

NGFS, 2020; Vermeulen et al. 2018). Most models (e.g., Allen et al., 2020; NGFS, 2020; TCFD, 

2017; Vermeulen et al., 2018) include scenarios in which the government implements policies to 

achieve these goals immediately (a shock) or by 2030 (a smooth transition). Most transition risk 

models focus primarily on regulatory action, but some focus on other transition risks such as 

technological obsolescence (e.g., Vermeulen et al., 2018). Although some scenario models are 

country specific (e.g., Allen et al., 2020; Vermeulen et al., 2018), others are international (e.g., 

Eis & Schafer, 2019; NGFS, 2020; TCFD, 2017). Different choices for goals, implementation 

timeline and scope can be useful in different scenarios, depending on the purpose of the research. 

Once these decisions are made, researchers can either apply those scenarios to the 

macroeconomy in a top-down approach or to individual companies in a bottom-up approach. 

2.2 Top-Down Approach 

The most popular approach to measuring financial climate risk has been top-down 

modeling. In the top-down approach, researchers model the impacts of climate change on the 

broader economy, then allocate that risk to individual firms, and finally measure how that risk 

will influence the probabilities that firms will default on their loans. Figure 2 illustrates this 

process. This approach, however, is not as accurate in modeling risks as a bottom-up approach 

because it must rely on a larger number of approximations than would a bottom-up approach. 

Instead of making one approximation to model risk at the firm level, it must first make an 

approximation to model macroeconomic risk and then another approximation to allocate that risk 
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to firms. An example of a transition risk that can be cleanly modeled at the firm level is a carbon 

tax since the carbon tax impacts firms directly and individually, so if a government wanted to 

assess the impacts of a carbon tax, a bottom-up approach would be preferable. 

 

Figure 2  

Typical Financial Climate Risk Assessment Model: Top-Down Approach 

 

Note. Most financial climate risk assessment models follow this pattern. They begin with a 

climate model that produces climate scenarios. A macroeconomic model then uses the climate 

scenarios to determine the impact of climate change on the economy. A microeconomic 
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operational model then maps the economy’s performance to predicted company performance and 

probability of default. 

2.2.1 Macroeconomic Model 

After forming a climate scenario, the first step in a top-down approach is using climate 

scenarios as inputs for a macroeconomic model. However, typically, macroeconomic models 

only account for the physical (e.g., Woetzel et al., 2020) or transition risk (e.g., Allen et al., 

2020; Nguyen, 2021; Vermeulen et al., 2018) proposed by the climate scenario, but not both. 

This is because physical risk and transition risk are inversely correlated, but researchers have not 

definitively determined the nature of this relationship (Jones & Friedlinstein, 2020). Based on the 

conditions described by the climate scenario, researchers predict changes to certain 

macroeconomic variables such as labor productivity, commodity prices, or interest rates (e.g., 

Allen et al., 2020; Vermeulen et al., 2018). Researchers then use these variables as inputs for a 

macroeconomic model (typically an integrated assessment model or a dynamic stochastic general 

equilibrium model) to project the scenario’s impact on the economy. This macroeconomic model 

then outputs how the scenario will impact economic growth and productivity, but not how the 

scenario will impact individual companies. 

One popular model that Allen et al. (2020) and Vermeulen et al. (2018) use is the 

National Institute Global Econometric Model (NiGEM). NiGEM is a dynamic stochastic general 

equilibrium model that includes between 80 and 200 economic variables (depending on the 

country the researcher is modeling) to predict global macroeconomic indicators such as GDP. 

Although NiGEM was not specifically designed for modeling climate change scenarios, 

manipulating inputs can project the economic impacts of climate change on gross domestic 

product. 
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After a macroeconomic model determines the large-scale impacts of climate change on 

the economy, an accompanying microeconomic model allocates those impacts to portfolio 

companies.  

2.2.2 Microeconomic Model 

To distribute macroeconomic risks to individual companies in the microeconomic model, 

researchers typically relate climate risk to company attributes (e.g., Allen et al., 2020; Vermeulen 

et al., 2018). Because increases in the price of GHG emissions typically drive transition risk, 

many researchers assume that the impact that transition risks will have on companies is 

associated with their emissions. If companies that emit more GHG account for a greater portion 

of the macroeconomic cost of climate change, the microeconomic model assigns to them more 

risk than those with less GHG emissions. Because there is no reliable data for GHG emissions at 

the firm level, researchers typically aggregate firms and distribute risk by industry. 

One popular form of distributing transition risk to companies in a microeconomic model, 

described by Vermeulen et al. (2018), is using a Transition Vulnerability Factor (TVF). A TVF 

measures the number of standard deviations separating an industry’s GHG emissions from the 

mean GHG emissions. A company’s TVF is essentially the z-score for the industry’s emissions 

and yields a proxy for the microeconomic impact of climate change when multiplied by the 

average economic impact of climate change across the wider economy. 

Researchers typically follow a similar pattern for estimating physical risk. A firm’s 

exposure to physical risk depends on its location, so the physical risk is generally determined 

locally. For example, a firm that has most of its operations in the Gulf of Mexico would face 

physical threats from hurricanes, but a firm operating in California would face threats from 

drought and wildfire. To account for geographic variations in the effects of climate change, 
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researchers focus on operational geography as opposed to industry to assess physical risk (e.g., 

Woetzel et al., 2020). 

After determining the operational economic impact of climate change on companies, the 

models translate the microeconomic operational risk to financial risk and predict probability of 

default at a company level. In summary, the bottom down approach arrives at financial 

institutions’ exposure level by creating climate scenarios, modeling the economic impacts of 

those scenarios, distributing those impacts to individual firms, and modeling the probability of 

default. These results provide insight into systematic financial exposure. However, the mapping 

of climate scenarios onto inputs to macroeconomic models (e.g., interest rates, labor force 

participation rates, etc.) requires approximations which can add error to models. 

2.3 Bottom-Up Approach 

Recently, researchers have begun to map the climate scenarios directly onto firms to 

avoid the error associated with mapping to macroeconomic variables and then firms. This 

approach is especially helpful for addressing the impact of targeted policies like carbon taxes.  

Reinders et al. (2020) apply a bottom-up approach to measure the market shock that 

implementing a carbon tax would cause. Specifically, they measure the Dutch financial system’s 

exposure to climate risk by using a discounted cash flow analysis to model financial institutions’ 

exposure to equity products with climate risk. They then employ Merton’s Model (1974) to 

measure financial institutions’ exposures to climate risk through debt products. 

2.3.1 Equity Exposure 

To measure the loss that financial institutions could suffer due a carbon tax decreasing 

equity market values, Reinders et al. (2020) used a discounted cash flow analysis. They equated 

the carbon tax to a decrease in cash flows for each year the carbon tax was assessed. Then, based 
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on the assumption that equity value is the sum of the discounted cash flows that a company will 

generate, they calculated the loss that financial institutions would face in the equity market as the 

sum of the discounted carbon taxes.  

Although this approach is elegant in its simplicity, it fails to account for the firms’ 

responses to climate risk and priced-in investor expectations. If a carbon tax increases the cost of 

a firm’s production process, the firm might change the process to one that would have been more 

expensive than the current process without the carbon tax but is cheaper than the current process 

with the carbon tax. Switching processes would mean that the firm would only lose a percentage 

of the carbon tax in cash flows. Additionally, equity investors have already begun to price 

transition risk into equity prices as the probability of those adverse events occurring multiplied 

by the magnitude of those expected risks (Ilhan et al., 2020; Kolbel et al., 2020). Therefore, 

equity prices may increase by only a portion of a carbon tax equal to the difference between the 

expected liability and actual liability, times one minus the probability of a carbon tax occurring. 

2.3.2 Debt Exposure 

The most common method of analyzing financial institutions’ exposure to climate risk 

through debt products is treating the amount that a company will pay as a liability and evaluating 

how that liability will impact probability of default. Reinders et al. take this approach to measure 

risk in the Netherlands.  A popular way to measure probability of default is using Merton’s 

(1974) model for default, which is the model I use in this thesis and will describe in further detail 

in my methodology. Although Merton’s model is an effective method for measuring probability 

of default, it makes various assumptions (including that borrowers do not pay dividends, a 

borrower enters default as soon as the value of its assets exceed the value of its liabilities, etc.) 
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that are not always true. Despite its drawbacks, treating a carbon tax as a liability is an effective 

way of measuring climate risk. 

In summary, the bottom-up approach can be used to model financial institutions’ 

exposures to both debt and equity products. Bottom-up approaches are preferable to top-down 

approaches for cases in which climate scenarios can easily be applied to individual firms because 

they avoid unnecessary approximations.  

2.4 Climate Risk Assessment Results 

Researchers have found evidence using both top-down and bottom-up financial climate 

risk assessments that European financial institutions have significant but manageable exposure to 

climate risk. Using a top-down approach, Allen et al. (2020) found that probabilities of default 

could increase by over 400% by 2040 in French industries such as petroleum production but by 

as little as 1.6% in the food service industry. Also using a top-down approach Vermeulen et al. 

(2018) found that regulatory ratios, a measure of how solvent financial institutions are, could 

decrease by 16% in Dutch financial institutions. Reinders et al. (2020) used a bottom-up 

approach and found that the available CET1 capital in the Netherlands could fall by 30%. 

However, reports that looked at the U.S., such as the U.S. Commodity Futures Trading 

Commission report (2020) assessed risk systematically and not at the financial institution level. 

Researchers have largely shied away from assessing climate risk at the financial 

institution level in the U.S. because climate-related disclosures are incomplete. Nonetheless, 

such assessments would allow us to measure climate risk more accurately. Since the systemic 

risk could be distributed unevenly between financial institutions, researchers should examine 

financial institutions’ portfolios to ensure that no individual financial institutions are materially 

exposed to climate risk. Although the first step to mitigating climate risk is quantifying that risk, 
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researchers have not come to a consensus on the magnitude of climate-related credit risk. This 

thesis builds on prior research by taking a bottom-up approach to modeling climate risk in the 

American financial system. 
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3. EMPIRICAL METHODOLOGY 

In this methodology, I first discuss the datasets that I used and the construction of the 

merged database that I used in my analysis. I then describe the theoretical steps that I take to 

measure exposure to climate risk among American Financial institutions. 

3.1 Data and Database Construction 

In this section, I describe the three datasets that I used and how I prepared those datasets 

for use in my methodology. 

3.1.1 Sources and Limitations 

The model in this thesis relies upon three types of data: greenhouse gas emissions data, 

financial institution loan data, and corporate financial data. The greenhouse gas emissions data 

came from the Carbon Disclosure Project’s 2019 Supply Chain report. The financial institution 

loan data comes from Thomson Reuters’ DealScan and the corporate financial data comes from 

CapitalIQ. Each data set makes unique contributions to the model and has specific limitations. 

Greenhouse Gas Emissions Data 

All emissions-related data comes from Carbon Disclosure Project (CDP) reports between 

2017 and 2019. The three reports together contain data on 5,950 companies’ sustainability goals 

and performance from 2015 to 2018. From the larger CDP dataset, I used self-reported data from 

4,535 companies on Scope I greenhouse gas emissions in tons of CO2 equivalent (CO2e). Scope I 

emissions account only for emissions that come from sources that a company owns or operates 
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(e.g., the fossil fuels burned while making steel), whereas Scope II emissions include the 

emissions required to generate the energy that a company purchases from a third party (e.g., the 

emissions from generating the electricity to power lights at a factory), and Scope III emissions 

include all other indirect emissions from a company’s supply chain (i.e., the emissions required 

to ship a part). By only including Scope I emissions, I bias emissions towards companies that 

engage in transportation or energy generation services. Complete summary statistics for CDP 

data can be found in Table 1. CDP data allowed me to model borrowers’ yearly greenhouse gas 

emissions and potential liabilities to a carbon tax. 

Table 1 

Summary of CDP Data 

Variable Full 

Dataset 

2018 2017 2016 2015 

Number of Companies  4,535 3,348 2,477 3,340 185 

Average Emissions (tons of CO2e) 5,747,042 12,372,260 1,666,644 8,077,356 3,728,164 

Average Revenue ($k) 932,862 966,954 979,621 950,008 748,277 

Market Capitalization ($k) 1,136,709 1,173,443 1,182,798 1,152,330 506,302 

Number of Industries Represented 

(4 digit SIC Code) 

350 339 328 346 88 

Number of Industries Represented 

(3 digit SIC Code) 

240 231 225 238 79 

Number of Industries Represented 

(2 digit SIC Code) 

72 71 68 72 36 

Note. There were 64 datapoints from 2008-2014 and 2019. The number of datapoints in each 

year was not high enough warrant inclusion in the table above. 
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Limitations of CDP data include its lack of auditing and industry coverage. Because CDP 

data is voluntarily self-reported and not audited, it may be unreliable (Stanny, 2018). Self-

reporting also creates a response bias, meaning that companies who respond to the survey may 

not be representative of the larger population. Companies with high emissions or low profit 

margins are underrepresented in the dataset (Giannarakis et al., 2017; Datt et al., 2019). 

Although the CDP dataset excluded the eight industries listed in Table 2, none of the industries 

that it excluded are known as high-emissions industries. The lack of data from these industries 

meant that I had to exclude companies in those industries from my dataset. 

Table 2 

Two-Digit SIC Codes Missing from CDP Data 

Two Digit SIC Code Industry  

89 Miscellaneous 

76 Miscellaneous Repair 

72 Dry cleaners, laundromats, barber shops 

57 Home Furnishing 

55 Automotive Dealers 

83 Social Services 

82 Educational Services 

 

Corporate Lending Data 

DealScan is a database that contains information on corporate loan issuance, primarily in 

the U.S. I drew corporate lending data from DealScan. Carey and Nini (2007) found that 

DealScan contains roughly 90% of loans (excluding “very small loans”) that are syndicated in 

the U.S. DealScan draws its data from SEC filings, publicly traded debt, and confirmed sources. 
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I used the data from DealScan to model the composition of financial institutions’ lending 

portfolios. 

There are several important limitations in the DealScan data. Because DealScan data only 

covers syndicated loans, it does not include bilateral agreements between companies and 

financial institutions. If these data were included in my model, the predictions for total losses due 

to climate change would be more severe. Accordingly, this limitation is likely to mean that 

climate-related risks are even greater than those predicted by my model. Because some loans 

reported in DealScan were not associated with an equity ticker, I could not pull necessary 

company information. As a result, I excluded 3,451 out of 4,109 borrowers from my model due 

to partial data. Finally, because the DealScan database only contains new loan issuance, I 

assumed that financial institutions buy and sell loans in equal volume and do not sell loans to 

companies in specific industries at a higher frequency than those to companies in other 

industries. 

Corporate Financial Data 

I drew corporate financial data from CapitalIQ. CapitalIQ is a data aggregator that pulls 

information from SEC filings (primarily 10K and 10Q filings) to build out a company’s financial 

profile. It contains data on companies worldwide. I used data from CapitalIQ as inputs for 

Merton’s model (1974) for probability of default. 

CapitalIQ’s data limitations included poor international ticker-to-company conversion 

and infrequent mistakes. I excluded most international companies from my analysis because 

CapitalIQ misidentified them as American companies and returned incorrect data. Additionally, 

data from platforms like CapitalIQ does not match 10K data between 6.5 and 7.7% of the time 

https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
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(Boritz & No, 2019). Many of these discrepancies cause significant changes in probability of 

default calculations (Boritz & No, 2019).  

Table 3 

Summary of DealScan Data 

Variable All Current 

American 

Facilities 

Term Loans American Non-

Financial 

Borrowers 

Bank Lenders 

Facilities 26,337 14,156 11,049 8,387 

Lenders 7,403 1,656 1,452 536 

Borrowers 10,110 6,685 5,052 4,109 

Average Facility Quantum $381,832,545 $364,539,025 $360,332,300 $409,432,200 

Note. Current American facilities are USD denominated facilities syndicated in the U.S. that 

have a facility start date after Jan. 1, 1989 and maturity date after January 29, 2021. American 

Non-Financial Borrowers are companies with Primary SIC codes outside the range 6000-6999 

whose “Country” field on DealScan is “USA”. Bank Lenders are those whose “InstitutionType” 

on DealScan is either “US Bank” or “Investment Bank” 

3.1.2 Data Construction 

To prepare the data for use in my model, I removed all incomplete data or data unrelated 

to American financial institutions. I began with all DealScan facilities with a maturity date after 

1/29/2021 and a start date after 1/1/1990. I then filtered out all loans that were not classified as a 

“Term Loan …” or a “Delayed Draw Term Loan” because other loans may not be funded (i.e., 

the financial institution may have made a commitment to the company, but not actually paid it 

anything yet), and the financial institution may have the right to refuse funding if the company 

enters default. Once I had the term loans, I removed loans to other financial services firms (with 

https://www.researchgate.net/profile/Alemu-Chala/publication/333312044_Syndicated_Lending_The_Role_of_Relationships_for_the_Retained_Share/links/5ce6852492851c4eabb7c2fe/Syndicated-Lending-The-Role-of-Relationships-for-the-Retained-Share.pdf
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SIC Code in the 6000’s) and non-American borrowers, because they are outside the scope of this 

project. Next, I eliminated any lenders that were not classified in the InstitutionType as “US 

Bank” or “Investment Bank,” because they are outside the scope of this thesis.  

After creating the list of American facilities, lenders, and borrowers that fell within the 

scope of this thesis, I drew financial data on those borrowers from CapitalIQ. I grouped the 

companies by their UltimateParentIDs in DealScan (which maps subsidiary companies to their 

parents), because larger companies are easier to match with their CapitalIQ entry than smaller 

companies. There were 4,109 parent companies. A ticker was available in DealScan for 1,473 

parent companies which allowed matching with their CapitalIQ company profile. 

For companies that did not have a ticker in DealScan I used the DealScan/Compustat 

match table created by Schwert (2018). This link table contains GV Keys, which can be used to 

identify companies, along with DealScan FacilityIDs and DealScan CompanyIDs. However, 

because 67 out the 1,182 borrowers that are in the link table have different GV keys across 

different facilities, I first attempted to match companies by facility. If the facility was not in the 

link table and the borrower only had one GV Key in the link table, I used the GV Key based on 

the borrower’s DealScan Borrower ID to pull financial data from CapitalIQ. This data screening 

methodology is depicted graphically in Figure 3. In total, I was able to locate an identifier for 

1,314 out of 4,109 companies. CapitalIQ only accepted 707 of these companies, and only 647 

companies were associated with enough data to be usable. Nonetheless, these 647 companies 

account for 1,532 facilities worth $1.1 trillion. 
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Figure 3 

Data Screening Methodology 

 

Note. I followed this methodology to narrow data to match the scope of this thesis. 

3.2 Theoretical Approach 

My theoretical methodology consisted of three steps: predicting borrowers’ exposures to 

transition risk in the form of a carbon tax, modeling a company’s marginal probability of default 

due to that liability, and aggregating borrowers’ probabilities of default at the industry and 

financial institution levels. I treated the assessed carbon tax as a liability on a company level in 

calculations of probability of default. I multiplied marginal probability of default (the increase in 

probability of default due to the carbon tax) by the loans quantum and a recovery rate to 

calculate financial institutions’ loan losses and scale those numbers to match the size of capital 

markets.  
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3.2.1 Borrower Exposure to Transition Risk 

Since carbon taxes depend directly on greenhouse gas (GHG) emissions, to calculate a 

borrower’s exposure to transition risk from a carbon tax, I modelled the borrower’s yearly GHG 

emissions. Because companies are not required to disclose their GHG emissions, I used 

incomplete self-reported data from the Carbon Disclosure Project (CDP) to project emissions. If 

the CDP dataset contained the borrower, I used the borrower’s average reported emissions 

between 2008 and 2019 (for all years that there were data). Approximately 19.5% of borrowers 

were included in at least one CDP report. For the rest of the companies in the sample, I predicted 

carbon emissions using company characteristics such as their industry classifications. 

According to the United States Environmental Protection Agency (2006) certain sectors, 

such as transportation or heavy industry, produce outsized amounts of carbon emissions. 

Therefore, If the CDP dataset did not contain information on a specific borrower, I used average 

carbon intensity per dollar of revenue (carbon intensity) for companies in the borrower’s industry 

to model emissions. To determine a borrower’s industry, I use its Standard Industrial 

Classification Code (SIC code). SIC codes have three tiers: Major Group (two-digit code), 

Industry Group (three-digit code), and Industry (four-digit code). I used the most specific SIC 

code (either two-, three-, or four-digit) for which there were data. Overall, the CDP dataset 

contained actual data for 19.5% of portfolio companies, Industry level data for 45.5% of 

portfolio companies, Industry Group Level data for 18.8% of portfolio companies, Major Group 

level for 11.4% of portfolio companies, and no data for 4.7% of portfolio companies. I then 

multiplied the portfolio company’s implied carbon intensity (i.e., how much I predict the 

company will emit per dollar of revenue based on its industry) by its revenue from the year 2020 

to establish its taxable emissions.  
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To calculate tax liabilities, I multiplied portfolio companies’ taxable emissions by a 

hypothetical carbon tax. I chose to analyze the impact of a range of carbon taxes from $5/ton 

CO2e to $150/ton CO2e because the range of values that scientists and policy experts are 

predicting is large, and providing a range allows governments to assess the impact of different 

levels of taxation on financial stability or of a carbon tax in addition to other transition risks. I 

selected the specific range of carbon taxes to consider based on research on carbon pricing.  

The literature on carbon price is broken up into two categories: the price of carbon 

necessary to offset emissions-based externalities (social cost of carbon) and the price of carbon 

necessary to meet a predetermined goal (e.g., keep global temperatures from rising 2 degrees 

Celsius above pre-industrial levels). Peer-reviewed assessments of the social cost of carbon 

range from -$13.36 to $2,386.91 per ton of carbon dioxide with a mean of $54.71 (Wang et al., 

2019) The mean of $54.71 is also in line with the Biden administrations’ most recent 

(Interagency Working Group, 2021) assessment of the social cost of carbon, which gave an 

estimate for the social cost of carbon between $14 and $152 per ton of CO2e and a best guess of 

$51 per ton of CO2e. 

Common targets on which carbon taxes are based include reaching net-zero emissions 

and meeting goals set in the Paris Accords. Kaufman et al. (2020) found that for the U.S. to reach 

net zero emissions by 2050, the government would be required to implement a carbon tax 

between $34 and $64 by 2025. Similarly, Chen and Hafstead (2016) found that to reach its Paris 

Accord goal of reducing emissions by 26%-28% by 2020, the U.S. would be required to 

implement a carbon tax of $20.78 in 2013 dollars (or $23.46 in 2020 dollars). Given that most 

assessments of the cost of carbon center around $50 per ton of CO2e, I chose $50/ton as my base 
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case, but also included most of the Biden administration’s range of estimates, from $5/ton to 

$150/ton in my analyses. 

I assessed the impact of this range of carbon taxes on probabilities of default over one, 

two-, three-, four-, and five-year time horizons to see how the implications of the carbon tax will 

differ over different time horizons. My base case is a five-year time horizon because a carbon tax 

ideally will stay in effect into perpetuity, but eventually portfolio companies will change their 

operations to minimize tax burden. 

3.2.2 Marginal Probability of Default and Loan Losses 

To calculate borrowers’ marginal probabilities of default from a carbon tax, I calculated 

the probability of default using Merton’s model (1974), as described below, before and after a 

carbon tax. My Python implementation of this methodology can be found in Appendix F. 

Merton’s Default Model 

Merton’s model for probability of default treats a company’s capital structure as a 

European call option (an option to buy an equity at a specified price on a specified date) and uses 

the Black-Scholes equation to find the probability that a company enters default. For a full 

explanation of European call options and a derivation of the Black-Scholes equation, see 

Appendix G.  

At its core, Merton’s model (1974) assumes that a company is in default when the value 

of its liabilities exceeds the value of its assets. This assumption, (along with the assumptions that 

the equity does not pay dividends, assets grow at the risk-free rate, and there is no coupon on the 

debt) allows one to value a company’s equity as a European call option where the value of the 

borrower’s assets is analogous to the price of the option’s underlying equity. This relationship is 

shown graphically in Figure 4. Similarly, the value of the borrower’s liabilities is analogous to 
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the strike price. Just as the value of the option on the date it expires equals the difference 

between the value of the underlying equity and the strike price (or zero, if greater), the value of a 

company’s equity equals the difference between the value of the company’s assets and its 

liabilities (but no less than zero). Plugging liabilities into strike price, asset volatility into equity 

volatility, and equity value into option value in the Black-Scholes equations (found in Appendix 

G) yields Formulas 1 through 3 where A is the asset value, L represents company liabilities, r is 

the risk-free rate, t is the time period, 𝜎𝐴=Asset Volatility, and N(x) is the cumulative normal 

distribution of x. 

Assuming one knows correct values for all specified variables and knows that N(d2) in 

the Black Scholes formula is equal to the probability that the option is in the money, one can 

calculate the probability that an option is out of the money (which is analogous to a company 

being in default), by subtracting N(d2) from 1, yielding probability of default. However, it is 

difficult to know true asset values or asset volatility because companies only disclose their 

financials once per quarter. 

𝑑1 = ln (
𝐴

𝐿
) +

𝑟+
𝜎𝐴

2

2
∗ 𝑡

𝜎𝐴 ∗ √𝑡
 

 

(1) 

 

𝑑2 = 𝑑1 − 𝜎𝐴 ∗  √𝑡 (2) 

𝐸𝑞𝑢𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 = 𝐴 ∗ 𝑁(𝑑1) − L ∗ 𝑒−𝑟∗𝑡 ∗ 𝑁(𝑑2) 

(3) 

 

However, since public companies’ asset values are only published quarterly, I implied 

portfolio companies’ asset values and asset volatilities based on equity value and equity 

volatility. To arrive at asset value and volatility, I used equity volatility as asset volatility in 
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Merton’s model to solve for asset values for all trading days in a year. To determine the asset 

volatility, I took the standard deviation of the natural log of day-on-day returns of the implied 

asset. I compared the implied asset values' volatility to the initial value for asset volatility. If the 

difference was greater than .001, I repeated this process using the new asset volatility that I 

calculated as my guess. Using the asset values and volatilities that I calculated from the 

converged model, I calculated the probability of default with the borrower’s existing liabilities 

alone and added the carbon tax calculated in the first step to existing liabilities to calculate 

marginal probability of default.  

Figure 4.  

Graphical Depiction of Merton’s Model for PD 

  

Note. Merton’s model for probability of default assumes returns on asset value are normally 

distributed. The probability that a company will be in default at time t is the probability that 

assets will be less than liabilities at that time. 
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For simplicity’s sake, I assumed that borrowers would not change their behavior to 

decrease their GHG emissions and tax exposure over the one, two-, three-, four-, and five-year 

time horizons. I counted the carbon tax exposure in year one as short-term debt and the carbon 

tax exposures in years two through five (in scenarios that included those years) as long-term 

debt, because a carbon tax due in those years is similar to a debt instrument with a maturity date 

in those years. I only counted half of a company’s long-term liabilities towards a company’s 

liabilities in Merton’s model to adjust for the possibility that long-term debt will be restructured 

or that assets might briefly exceed liabilities before the debt’s maturity date. I then used Merton’s 

model to calculate probability of default based on a risk-free rate of 2%, 252 trading days in a 

year, company’s assets, a company’s liabilities (with and without carbon tax liabilities), and a 

company’s asset volatility to calculate marginal probability of default on a company-by-

company basis due to the carbon tax. 

To calculate expected loan losses, I multiplied the marginal probabilities of default by 

loan quantum and a recovery rate (the percentage of loan a lender will be able to recover if a 

borrower goes into default). According to Ou et al. (2021), the average recovery rate on a 

secured loan (which most term loans are) was 69% in 2020. However, if a portfolio company is 

going into default because of a carbon tax, its assets are likely intended for use in emissions-

intensive processes. This fact is likely to reduce the assets’ resale value in a world with a carbon 

tax. To consider this risk, I examined a scenario with a 0% recovery rate and a 69% recovery 

rate, with the 0% recovery rate being my base case.  

  

file:///C:/Users/arisi/Downloads/Default%20Reports%20-%20Default-Trends-Global%20-%2030Jan20_Moodys.pdf
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Aggregation and Analysis of Probabilities of Default 

Once I generated marginal probabilities of default at the borrower level, I aggregated the 

borrowers at the systematic, industry, and financial institution level. To understand the relation 

between emissions and probability of default and to determine if high emitters have different 

existing debt burdens than low emitters, I determined the distributions of emissions and tax 

burden at the company and industry level. I determined the total loan quantum included in my 

dataset and compared that quantum to the actual amount of Commercial, Industrial, and 

Commercial Real Estate Loans in the U.S., reported by the St. Louis Federal Reserve (Board of 

Governors of the Federal Reserve System, 2021b). To assess systematic risk, I multiplied the 

ratio of loan losses to loan base by the actual loan quantum in the U.S. and compared the result 

to losses under the 2020 CCAR stress test’s severely adverse scenario. At the industry level, I 

grouped loan losses by two-, three-, and four-digit SIC code to find which industries were the 

greatest emitters. At the financial institution level, I distributed each facility’s loan losses to each 

financial institution that lends to that facility evenly, then scaled those losses to match the 

financial institution’s actual U.S. lending portfolio. Because financial institutions do not disclose 

the geographic breakdown of their lending portfolio, I scaled their total portfolio by the 

percentage of revenue that is derived from the Americas to arrive at their American loan 

portfolio (most financial institutions did not have country-level data and assumed that most 

American revenue is derived from the U.S.). 
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4. RESULTS 

In this section, I explore the extent to which baseline probabilities of default (PDs) that 

my model calculated without any carbon tax are comparable to other researched values for PDs. 

Next, I investigate the extent to which the presence of a carbon tax would establish marginal 

probabilities of default (MPDs) and the drivers of those MPDs. I then determine the implied 

liabilities those MPDs create for U.S. financial markets, industries, and financial institutions.  

4.1 Probabilities of Default Before Carbon Tax 

I first analyzed the PDs for companies in my dataset without any carbon tax and 

compared those PDs to baseline values established in the literature. I found that that the average 

PD ranged from 8.46% over a time horizon of one year to 20.38% over a time horizon of five 

years, as Table 4 shows. Since these averages are higher than researched values for PDs, 

Merton’s model is likely overestimating values of PDs for companies in my dataset. This 

overestimation of PD in the case without a carbon tax means that average PDs in all other 

scenarios are also likely too high. However, the elevated PDs should not have a very large 

impact on MPDs, because both the baseline PDs and carbon tax PDs will be elevated. 

Additionally, percentage changes in PDs should not be impacted, again since both baseline and 

carbon tax PDs should be impacted by the same percentage factor. Table 4 contains average 

baseline PDs over all time horizons. 
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Table 4.  

Baseline 

Probabilities 

of Default 

Time Horizon 

1 Year 2 Years 3 Years 4 Years 5 Years  

(Base Case) 

Average PD 8.32% 11.82% 14.92% 17.72% 20.26% 

Note. Across all time horizons, probabilities of default without a carbon tax are higher than 

would be expected based on the literature. 

 

4.2 Marginal Probability of Default 

After I determined base levels of PD, shown in Table 5, I analyzed how different levels 

of a carbon tax would change those baseline PDs. I found that average MPD arising from the 

carbon tax ranged from 0.03% over one year with a tax of $5/ton of CO2e to 1.6% over five 

years with a tax of $150/ton of CO2e, as Table 6 shows. For my base case of $50/ton over five 

years, I found that the MPD averaged 0.60%. However, the distribution of MPD was skewed 

right, meaning that a few companies suffered a dramatic increase in PD while others suffered 

almost no increase in PD. This disparity is exemplified by the fact that the median MPD only 

ranged from 0.00001% in the one-year, $5/ton scenario to 0.0491% in the five-year, $150/ton 

scenario, as Table 7 shows and Figure 5 shows graphically. Even in the scenario with the most 

extreme carbon tax, the median company’s PD remains practically unchanged. The fact that 

median MPD is so much lower than average MPD likely means that a few companies are 

accounting for most of the marginal probability of default. Since median MPD represents the 

“average” company, most companies’ risks of default would not materially change. The PD and 

MPD values for all scenarios can be found in Appendices A and B, respectively. Generally, the 

MPDs increase linearly as carbon taxes increase. The skew in values of MPD can be explained 

by the distribution of emissions and carbon tax burden. 
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Table 5.  

Summary of Average Probabilities of Default by Scenario 

 Time Horizon 

Carbon Tax ($) 1 Year 2 Years 3 Years 4 Years 5 Years 

(Base Case) 

0 8.32% 11.82% 14.92% 17.72% 20.26% 

50 (Base Case) 8.46% 12.05% 15.29% 18.22% 20.87% 

100 8.57% 12.30% 15.65% 18.67% 21.39% 

150 8.69% 12.55% 16.00% 19.09% 21.87% 

 

Note. These probabilities of default are the baseline values off which marginal probabilities of default are 

calculated. 

Table 6.  

Summary of Average Marginal Probabilities of Default by Scenario 

 Time Horizon 

Carbon Tax ($) 1 Year 2 Years 3 Years 4 Years 5 Years 

(Base Case) 

50 (Base Case) 0.14% 0.23% 0.37% 0.50% 0.61% 

100 0.24% 0.48% 0.73% 0.95% 1.13% 

150 0.37% 0.73% 1.08% 1.37% 1.61% 

Note. Average marginal probabilities imply that a carbon tax would influence overall default 

rates. 
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Table 7.  

Summary of Median Marginal Probabilities of Default by Scenario 

 Time Horizon 

Carbon Tax ($) 1 Year 2 Years 3 Years 4 Years 5 Years 

(Base Case) 

50 (Base Case) 0.00% 0.00% 0.01% 0.01% 0.02% 

100 0.00% 0.00% 0.01% 0.02% 0.03% 

150 0.00% 0.01% 0.02% 0.03% 0.05% 

Note. Median marginal probabilities of default are much lower than average probabilities of 

default. This difference indicates that a few companies are accounting for most of the marginal 

probability of default and most companies’ risks of default would not materially change. 
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Figure 5.  

Probabilities and Marginal Probabilities of Default 

Figure 5a.  

Probabilities of Default 

 

Figure 5b.  

Marginal Probabilities of Default 

 

Note. Economy-wide probabilities of default increase linearly as carbon taxes increase in 

one-, two-, three-, four-, and five-year scenarios. However, baseline PD numbers than previous 
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research suggests they should be. It is critical to note that the median PD/MPD numbers better 

represent what would happen to the “average” company that is not in a high emissions industry, 

whereas the mean PD/MPD represent the effect across all companies. Although the trends in 

mean and median MPD are similar, the fact that in absolute terms, median PD is practically 0 

while mean PD is much larger provides evidence that a few companies are being severely 

impacted by a carbon tax, while most companies are barely impacted at all. 

To determine what was causing the skew in the distribution of MPDs, I investigated the 

distribution of emissions and carbon tax burdens. I found that certain companies accounted for 

most emissions and most of the total carbon tax burden. I estimated that the average portfolio 

company emits 689,361 tons of CO2e per year, which is materially lower than the average 

emissions in the CDP Database. This lower average emissions statistic does not mean that 

financial institutions are avoiding lending to high-emissions industries because the companies in 

the CDP database are not necessarily representative of the larger economy. However, As Figure 

6 shows, the distribution of company emissions was skewed right, and the number of companies 

in each emissions bracket decreased exponentially. In fact, 387 companies emit less than 1,000 

tons of CO2e per year, but 12 companies emit more than 10,000,000 tons of CO2e per year. As a 

result, the median quantity of CO2e emissions is only 10,727 tons and the first and third quartile 

CO2e emissions are 878 tons and 80,093 tons, respectively. Because carbon taxes are determined 

by emissions, the relative burden of the carbon tax is also focused heavily on a handful of 

companies. 

In the base case ($50/ton carbon tax over five years), I found that portfolio companies 

were liable for a discounted total (liabilities after one year are counted as long term liabilities and 

divided by two) of $68.04Bn in carbon taxes. These liabilities translated to an average of only 
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1.51% of portfolio company revenue. However, the carbon tax liabilities ranged from practically 

0% of revenue to over 71% of revenue. Because the distribution is skewed right, the median ratio 

of carbon tax to non-carbon tax liabilities was 0.06%, as Figure 7 shows. In fact, the top 1.5% of 

emitters in the dataset accounted for just over 60% of the total carbon tax liability. The skewed 

distribution of carbon taxes explains why the distribution of MPDs was also skewed. A full table 

of carbon taxes as percentage of liabilities can be found in Appendix C. 

Figure 6.  

Distribution of Company Emissions 

 

Note. Certain companies emit a far larger amount of greenhouse gasses than others do. 

Since the distribution is skewed right, a carbon tax will disproportionately affect certain 

companies. 
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Figure 7.  

Distribution of Carbon Taxes as a Percentage of Company Revenue

 

Note. The distribution of emissions as a percentage of revenues is skewed right, just as the 

distribution of emissions. This skew also supports the fact that certain companies bear the brunt 

of the burden from a carbon tax. 

 

Additionally, Figure 8 shows that although the companies with the highest leverage have 

very low emissions, when excluding high leverage companies, there is a positive correlation 

between leverage and emissions. This means that companies with high emissions are likely to 

have more debt to begin with than companies with low emissions and amplifies the effect that 

the skewed distribution of carbon taxes has on MPDs. 
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Figure 8. 

Distribution of Emissions and Leverage 

Figure 8a. 

Full Distribution of Emissions and Leverage 

 

Note. When looking at the distribution of all companies’ leverage and emissions, there seems to 

be an inverse relationship between emissions and leverage. 

Figure 8b. 

Distribution of Emissions and Leverage, Excluding Highly Levered Companies 

 

Note. However, when excluding companies with extremely high leverage (liabilities > 

2*Revenue), there appears to be a positive correlation between emissions and leverage. This 

indicates that financial institutions do not hesitate to lend to companies with high emissions. 

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000Li
ab

ili
ti

es
 (

$
M

M
) 

/ 
R

ev
en

u
e 

($
M

M
)

Emissions (Tons CO2e) / Revenue ($MM)

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000

Li
ab

ili
ti

es
 (

$
M

M
) 

/ 
R

ev
en

u
e 

($
M

M
)

Emissions (Tons CO2e) / Revenue ($MM)



 

45 
 

 

4.3 Cumulative Commercial, Industrial, and Commercial Real Estate Loan 

Losses 

I multiplied MPDs by the value of loans and by a recovery rate, or the percentage of a 

loan that a lender will recover if the borrower defaults, to calculate projected loan losses. I then 

scaled projected loan losses to match market quantities of debt. Assuming a 0% recovery rate in 

my base case, I found that industry-wide losses would total $30.30Bn scaled to include 

commercial, industrial, and commercial real estate loans, and would fall to $9.39Bn scaled 

assuming the industry wide average recovery weight of 69%. However, I put more weight on the 

0% recovery rate scenario, given that if a carbon tax is severe enough to force a company into 

bankruptcy, its assets are likely intended for use in emissions-intensive processes. Because a 

carbon tax would make those processes uneconomical, the value of assets that secured the loan 

would be impaired. Full tables of losses in each scenario, including unscaled losses and losses 

only scaled to match the commercial and industrial loan market can be found in Appendix D. 

Once again, I found that losses were skewed to the right, with a small number of firms 

accounting for most of the impact. After determining the cumulative losses in loan markets, I 

aggregated those losses by industry. 

4.4 Loan Losses by Industry 

To investigate whether companies in certain industries were more likely to go into default 

than companies in other industries I aggregated carbon tax liabilities and loan losses by SIC 

code. I found that a few industries at the two-, three-, and four-digit SIC code level accounted for 

most carbon emissions/carbon tax liabilities. As Table 8 shows, the top ten two-digit SIC codes 

accounted for 90.02% of carbon tax liability, and the top industry; Electric, Gas, and Sanitary 
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Services; independently accounted for 59.05% of the carbon tax burden. Although many of the 

industries in the top ten emitted large quantities of GHG per revenue dollar (i.e., Electric Gas, 

and Sanitary Services, Furniture and Fixtures, Transportation, and Heavy Construction), others 

had very low emissions, but were classified in the top ten because they earn large quantities of 

revenue (i.e., Apparel and Accessory Stores and Wholesale Trade), or made up a large 

percentage of the loans made by financial institutions. Just as the burden of the carbon tax was 

concentrated in certain companies and certain industries, MPDs due to the carbon tax were also 

concentrated among a few companies and industries. 

Table 8. 

Top Ten Industries by Carbon Tax Burden 

SIC 

Code 

Industry Description Percentage of 

Carbon Tax 

Burden 

Average Carbon 

Tax as Percentage 

of Revenue 

Percentage 

of All Loans 

Average 

Revenue 

($Bn) 

49 
Electric, Gas, and Sanitary 

Services 

59.05% 12.14% 5.37% 6.89 

50 
Wholesale Trade – Durable 

Goods 

12.78% 0.05% 2.13% 454.27 

45 Air Transportation 5.19% 5.54% 2.34% 4.26 

28 

Chemicals and Allied 

Products 

2.33% 0.51% 8.25% 6.08 

16 Heavy Construction 1.96% 5.63% 0.31% 3.49 

25 Furniture and Fixtures 1.95% 11.14% 0.19% 3.06 

51 
Wholesale Trade – 

Nondurable Goods 

1.86% 0.68% 2.80% 21.86 

44 Water Transportation 1.77% 7.11% 1.03% 6.62 

13 Oil and Gas Extraction 1.71% 1.48% 0.70% 8.77 
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56 

Apparel and Accessory 

Stores 

1.42% 0.01% 0.10% 879.43 

Note. The ten industries that bear the highest carbon tax burdens do so because they emit large 

quantities of greenhouse gases for every dollar of revenue that they earn, they make up a large 

percentage of financial institutions’ loan portfolios, or they generate large amounts of revenue. 

4.5 Financial Institution Level Exposures 

To determine whether individual financial institutions face serious climate risk, I 

aggregated loans by financial institution. I found that just as certain companies and industries 

would suffer disproportionately from a carbon tax, so too would certain financial institutions. Of 

the 19 American Domestic Systematically Important Banks (DSIB), Global Systematically 

Important Banks (GSIB) and companies with outsized carbon tax liabilities for which I had data, 

Comerica Bank was an outlier, with loan losses totaling 1.24% of its lending portfolio. The next 

closest financial institution only lost 0.69% of its portfolio, as Table 9 shows. This unequal 

distribution of climate risk by bank indicates that although the American financial system may 

not face fragility because of climate change, certain financial institutions may. 

My results also indicate that some of these individual financial institutions may be taking 

on climate risk knowingly, while others may not be. One might expect that financial institutions 

that have higher risk tolerance in general would have higher risk tolerance to climate risk, 

indicating a conscious effort on the part of financial institutions to treat climate risk similarly to 

other risk, but that is not the case. I found that the coefficient of correlation between a financial 

institution’s comparative rank for general loan losses and loan losses due to climate change is 

only 0.082. However, as Table 9 shows, certain financial institutions (Truist, Bank of America, 

Capital One, and Morgan Stanley) had low general loan losses and loan losses due to climate 
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change, which indicates that although financial institutions as a group may not be meaningfully 

considering climate risk, certain institutions may be.  

Additionally, my results indicate most of the exposure to climate risk in banks with the 

largest overall exposure comes from the same industry. Table 10 shows the top three industry 

exposures for each bank. For all six financial institutions with the largest carbon tax exposure, 

the two industries that accounted for most of their carbon tax burden were air transportation (SIC 

code 45) and electric, gas, and sanitary services (SIC code 49). This indicates that if financial 

institutions were to face instability due to climate risk it would be due to their exposures to the 

same companies and would happen at the same time. 
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Table 9. 

Losses by Financial Institution 

Financial Institution 

Adjusted 

Losses 

($MM) 

Percentage 

Losses 

Percentage Non-

Performing 

Loans 

Percentage 

Losses - 

Rank 

Percentage Non-

Performing Loans 

- Rank 

Percentage 
Losses / 

Percentage Non-

Performing Loans 

JP Morgan $2,058.46 0.42% 1.04% 9 3 39.90% 

Bank of America $1,729.86 0.39% 0.57% 11 12 68.35% 

Citibank $918.75 0.49% 1.00% 6 4 48.54% 

Wells Fargo & Co $896.30 0.26% 0.98% 14 5 26.26% 

US Bancorp $613.20 0.47% 0.41% 7 14 113.55% 

Comerica Bank $546.91 1.24% 0.67% 1 10 184.93% 

PNC Bank NA $482.92 0.29% 0.94% 12 6 30.57% 

Truist $464.03 0.27% 0.45% 13 13 61.22% 

KeyBank $428.99 0.61% 0.82% 4 8 74.36% 

Compass Bank $276.06 0.69% 0.20% 2 18 343.62% 

Goldman Sachs & Co $252.36 0.64% 1.46% 3 1 43.77% 

Regions Bank $228.16 0.43% 0.88% 8 7 48.27% 

Huntington Bank $164.80 0.40% 0.60% 10 11 66.13% 

Fifth Third Bank $144.79 0.23% 0.77% 16 9 29.68% 

Capital One Bank $81.85 0.11% 0.40% 17 15 27.31% 

Northern Trust $56.24 0.52% 0.39% 5 16 132.07% 

Morgan Stanley Bank NA $28.18 0.04% 0.24% 18 17 15.82% 

Bank of New York Mellon $27.31 0.23% 0.16% 15 19 146.59% 

Ally Commercial Finance LLC $1.33 0.01% 1.28% 19 2 0.43% 
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Table 10. 

Financial Institution Exposure by Industry 

Bank 

SIC 

Code 1 Industry 1 

Percentage of 

Liabilities 1 

SIC 

Code 

2 Industry 2 

Percentage of 

Liabilities 2 

SIC 

Code 

3 Industry 3 

Percentage of 

Liabilities 3 

JP Morgan 45 Air Transportation 39.46% 49 Electric, Gas, and Sanitary 21.03% 25 Furniture Manufacturing 5.82% 

Bank of America 45 Air Transportation 31.06% 49 Electric, Gas, and Sanitary 16.34% 36 

Electronics 

Manufacturing 
8.09% 

Citibank 49 Electric, Gas, and Sanitary 43.80% 45 Air Transportation 32.91% 51 
Wholesale Trade - Non-

Durable 

3.63% 

Wells Fargo & Co 49 Electric, Gas, and Sanitary 24.67% 45 Air Transportation 16.80% 25 Furniture Manufacturing 14.65% 

US Bancorp 45 Air Transportation 41.70% 49 Electric, Gas, and Sanitary 23.91% 51 
Wholesale Trade - Non-

Durable 

7.44% 

Comerica Bank 45 Air Transportation 33.50% 49 Electric, Gas, and Sanitary 31.80% 51 

Wholesale Trade - Non-

Durable 

15.82% 

PNC Bank NA 49 Electric, Gas, and Sanitary 43.56% 51 

Wholesale Trade - Non-

Durable 
10.49% 12 Coal Mining 8.25% 

Truist 51 
Wholesale Trade - Non-

Durable 

23.64% 25 Furniture Manufacturing 17.89% 16 Heavy Construction 12.88% 

KeyBank 49 Electric, Gas, and Sanitary 73.09% 16 Heavy Construction 11.99% 73 Business Services 7.91% 

Compass Bank 36 Electronics Manufacturing 88.81% 49 Electric, Gas, and Sanitary 7.27% 70 Hotels 1.98% 

Goldman Sachs & Co 49 Electric, Gas, and Sanitary 50.63% 45 Air Transportation 33.74% 16 Heavy Construction 2.41% 

Regions Bank 49 Electric, Gas, and Sanitary 43.54% 16 Heavy Construction 18.24% 12 Coal Mining 10.80% 
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Bank 
SIC 

Code 1 Industry 1 
Percentage of 
Liabilities 1 

SIC 

Code 
2 Industry 2 

Percentage of 
Liabilities 2 

SIC 

Code 
3 Industry 3 

Percentage of 
Liabilities 3 

Huntington Bank 12 Coal Mining 38.82% 49 Electric, Gas, and Sanitary 25.47% 32 
Stone, Clay, Glass, and 

Concrete Manufacturing 

20.59% 

Fifth Third Bank 25 Furniture Manufacturing 33.60% 51 

Wholesale Trade - Non-

Durable 

16.02% 26 

Paper and Allied 

Products 

12.06% 

Capital One Bank 16 Heavy Construction 52.33% 73 Business Services 13.89% 13 Oil and Gas Extraction 5.10% 

Northern Trust 25 Furniture Manufacturing 54.16% 28 

Chemicals and Allied 

Products 

20.59% 26 

Paper and Allied 

Products 

11.87% 

Morgan Stanley Bank 

NA 
46 Fossil Fuel Pipelines 31.97% 79 

Amusement and 

Recreation Services 
29.43% 48 Communications 22.04% 

Bank of New York 

Mellon 

49 Electric, Gas, and Sanitary 65.27% 26 Paper and Allied Products 32.39% 73 Business Services 0.82% 

Ally Commercial 

Finance LLC 
37 Transportation Equipment 98.13% 32 

Stone, Clay, Glass, and 

Concrete Manufacturing 
1.06% 59 Miscellaneous Retail 0.81% 
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 5. DISCUSSION 

Given that climate change is rapidly causing economic destruction in the U.S. and 

globally, this thesis measures American financial institutions’ exposure to climate-induced 

transition risk in the form of a carbon tax and provides insight into the potential economic 

impacts of a carbon tax. I will discuss the implications of my analyses for systematic financial 

stability and the ways in which the implementation of a carbon tax would likely impact financial 

stability. I will also consider the implications of these results for financial regulators and 

consider limitations of my research that should be addressed in future work.  

Overall, my findings support the proposition that a carbon tax would be minimally 

disruptive for most companies, industries, and financial institutions. However, outsized climate 

risk in regional banks means that there may be concentrated risk in certain regions or industries 

that could result in sub-systemic financial instability of those regions/industries. Additionally, 

concentration of climate risk in certain industries that are important to the American economy 

could have knock-on effects and cause financial instability. Taken together, my findings support 

increased oversight of financial climate risk in smaller financial institutions. 

5.1 Implications for Financial Stability 

Measures of institutions’ financial risk at an aggregate level indicate if a carbon tax has 

the potential to create systemic financial instability. However, even if aggregate indicators of risk 

do not point to financial instability, financial instability at select financial institutions or 

economic instability in a particularly important industry can also create systematic instability. 
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Further, financial instability at regional financial institutions can create sub-systemic financial 

risk. Therefore, although my results for aggregate measures of exposure do not indicate that 

climate change will create financial instability, I find that risk at the industry level and at smaller, 

regional, financial institutions has the potential to create systemic financial risk. These findings 

are similar to those of Allen et al. (2020) in France and the CFTC in the United States. 

5.1.1 Aggregate Measures of Climate Risk 

The transition risk that a carbon tax poses to the American financial system in aggregate, 

although material, is not substantial enough to warrant regulation by itself. The cumulative size 

of loans that are unlikely to be paid back (non-performing loans) that financial institutions hold 

relative to the losses they are projected to suffer due to climate risk puts climate risk-induced 

losses into perspective. On average, loan losses due to climate risk are 79.02% of American 

financial institutions’ current non-performing loans across all divisions (not only commercial, 

industrial, and commercial real estate lending). This means that financial institutions would 

suffer almost double the loan losses that they would in normal situations due to a carbon tax, 

which is material. However, Basel III stipulates that financial institutions must hold enough 

capital to be able to withstand losses in a severely adverse scenario, meaning that financial 

institutions may be able to withstand these abnormal losses due to climate change, just as they 

would withstand losses due to an economic downturn.  

I found that in my base case scenario, loan losses would equal 6.62% of total losses in the 

2020 CCAR severely adverse scenario, scaling for the difference in loan base (CCAR only tests 

a loan base of $2.4 trillion, compared to my scaled loan base of $5.0 trillion). Across all 

scenarios with a 0% recovery rate, average losses ranged from .32% ($5/ton tax over one year) to 

17.54% ($150/ton over five years) of CCAR losses. This range means that even the most 
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impactful carbon tax would only have a fraction of the impact that the severely adverse scenario 

would. The average percentage of CCAR losses across all scenarios are listed in Appendix H. 

Given the relative scale of average losses from a carbon tax and the fact that all financial 

institutions passed the CCAR stress test in 2020, the average financial institution could almost 

certainly withstand the loan losses resulting from a carbon tax in isolation. However, climate 

change will not happen in isolation, and the causes of financial instability and fragility that the 

CCAR assessment attempts to address in a world without climate risk will also exist in a world 

with climate risk.  

Even if financial institutions’ average losses due to a carbon tax are layered on top of 

their CCAR losses, the cumulative losses are not material enough to cause systematic financial 

fragility or instability. In the 2020 CCAR severely adverse scenario, CET1 capital ratios dropped 

from an average starting value of 12.2% to an average minimum value of 9.6%. When including 

both losses due to climate change and the original CCAR losses, average CET1 ratios only fall 

0.17% further to 9.43%. Although minimum CET1 ratios vary by financial institution under 

Basel III, 9.43% is above the regulatory minimum in stressed scenarios for all financial 

institutions. Therefore, even losses from a carbon tax compounded with the losses in the 2020 

CCAR severely adverse scenario would not be enough to create cause for concern at an 

aggregate level. 

It is important to note that defaults due to transition risk would not be a one-time-event 

like the scenarios that the CCAR exercise emulate. Because these risks would continue until 

portfolio companies change their business processes to decrease their emissions, the impact of 

the risk could be larger than a short-term economic shock. In my model, I set the time horizon 

for transition risks at five years, but the impacts of a carbon tax could last longer. I am also only 
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estimating Scope I emissions and excluding Scope II and III emissions, which could increase the 

scope of damages. Even with these additional losses, however, existing banking regulation 

requires that financial institutions maintain a sufficient capital buffer that climate risk is unlikely 

to cause financial instability or fragility. These results are similar to the findings of Vermeulen et 

al. (2018) and Allen et al. (2020), both of whom study financial institutions’ exposure to climate 

risk in Europe and find that financial institutions are not at risk in aggregate. However, even if 

financial institutions in aggregate do not have exposure to climate risk that warrants concern, 

groups of financial institutions or industries may. 

5.1.2 Industry Level Measures of Climate Risk 

My results indicate that the concentration of climate risk in a few industries and financial 

institutions could create wider instability. Although the 2008 financial crisis was a unique case 

and was not caused entirely by the collapse of the housing market, it is evidence for how a 

bubble bursting in one industry can have wider implications. The same could be true for the 

transition risk from a carbon tax, and especially one focused on Scope I emissions like the one 

that I modeled. Because taxes on Scope I emissions penalize industries like transportation and 

electricity generation so heavily compared to other industries, there would more likely be a 

shock in one of those industries that would have knock-on effects throughout the economy. In 

the base case scenario, electricity generators’ (SIC code 49) probabilities of default increase by 

14.97%, from 19.16% to 22.03%. Although projecting the magnitude of increase in defaults 

necessary to shock the industry is difficult, any magnitude of disruption in such an essential 

industry could have knock-on effects.  

Because so many other industries rely on electricity, a disturbance in the electricity 

generation industry could have wide-reaching implications, and potentially cause financial 



 

56 
 

instability. The failure of Texas’ power grid during a winter storm in February of 2021 could end 

up causing $155 Bn in economic damage, demonstrating the impact that a failure could have 

(Puelo, 2021). Given the concentration of carbon tax exposure in industries important to the 

American economy and the impact that high levels of default in those industries have, further 

research is warranted on the second-level impacts of implementing a carbon tax. 

5.1.3 Financial Institution Level and Regional Measures of Climate Risk 

My results indicate that financial institutions classified as GSIBs or DSIBs are not 

individually vulnerable to financial climate risk, meaning these financial institutions will not 

contribute to financial instability. However, my results also indicate that smaller and regional 

financial institutions bear outsized exposure to climate risk and may create sub-systemic 

financial instability or fragility. 

Of the financial institutions classified as DSIBs or GSIBs, loan losses due to transition 

risk ranged from 0.05% (Ally) to 10.72% (Citi) of losses in the 2020 CCAR severely adverse 

scenario. Because climate-induced losses were such a small percentage of CCAR loan losses and 

all financial institutions passed the 2020 CCAR exercise, no GSIB or DSIB financial institutions 

individually face instability due to climate change. As Table 11 shows, even if DSIBs and GSIBs 

suffer losses from a carbon tax concurrently with losses similar to those they would suffer in the 

CCAR severely adverse scenario, each financial institutions’ CET1 ratio would remain above its 

regulatory minimum. Therefore, a carbon tax would not because financial institutions classified 

as GSIBs or DSIBs to pose a threat to systematic financial stability. 

However, certain non-DSIB and non-GSIB financial institutions, most notably Comerica 

and Compass, bear an outsized exposure to climate risk from a carbon tax and are not a part of 

the CCAR exercise. Even though these financial institutions are likely not large enough to create 
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systemic risk, they could still create sub-systemic risk in the regions in which they operate. As 

Table 11 shows, I predict that 1.24% of Comerica’s. Outside of Comerica, the highest loan loss 

percentage is Compass (0.69%), 44.4% lower than Comerica’s. Coincidentally, although both 

financial institutions used to be classified as DSIBs and take part in the CCAR stress tests, 

neither is anymore. This means that the two financial institutions with the most relative exposure 

to climate risk are also the two financial institutions with the least oversight. However, even if 

underregulated financial institutions have the highest exposure to climate risk, these financial 

institutions would not create sub-systemic risk unless they are not appropriately accounting for 

this climate risk. 

Although both Comerica and Compass both have CET1 ratios far above their regulatory 

minimums (as shown in Table 11), they could still face instability in poor economic conditions. 

Without knowing how Comerica and Compass would fare in the CCAR severely adverse 

scenario, one cannot say whether climate risk could push them into financial instability. For 

example, Goldman Sachs’ CET1 ratio falls from 13.35% to 8.35% in the CCAR severely adverse 

scenario, and if either Comerica or Compass were to suffer similar losses, losses from climate 

risk could put them into financial instability. 

More broadly, regional financial institutions (i.e., retail-focused financial institutions with 

operations in 20 or fewer states), have outsized exposure to climate risk. In my base case, 

national financial institutions’ losses due to climate only averaged 65.7% of their non-

performing loans, whereas regional financial institutions’ losses averaged 88.7% of non-

performing loans.  Similarly, national financial institutions’ losses averaged 0.37% of their total 

loan books, whereas regional financial institutions’ losses totaled 0.43% of their total loan books. 

Therefore, because smaller, non-DSIB, financial institutions and regional institutions in my 
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sample have higher exposure to climate risk, it is likely that less-regulated banks have the most 

exposure to climate risk. 

Although these smaller, less regulated financial institutions are unlikely to cause 

systematic financial instability due to their size, they have the potential to create sub-systemic 

risk in the regions that they serve. Because they are not subject to the same levels of regulatory 

scrutiny as larger banks, adverse macroeconomic conditions combined with climate risk could 

make them unstable. Although instability among these smaller financial institutions would not be 

as pernicious as systematic financial instability, it could still jeopardize liquidity for regional 

companies that rely on regional financial institutions for capital. Therefore, the potential for 

financial instability among certain institutions and regional institutions more broadly means that 

sub-systemic risk may exist among American financial institutions and may warrant regulation. 

5.2 Implications for Regulators 

My results have implications for two types of regulators: those looking to implement a 

carbon tax and those looking to regulate financial risk. My findings indicate that regulators 

looking to implement a carbon tax should not worry about the tax’s implications for systematic 

financial stability and that financial regulators should investigate implementing oversight for 

regional banks’ exposures to climate risk. 

I found a concentration of exposure to transition risk in a small number of industries, and 

within those industries, to a small number of companies. Allen et al. (2020) found the same 

industry and sub-industry concentration of climate risk with better data on company emissions 

(because their research focused on France). However, Allen et al. found a concentration of risk in 

different industries (petroleum extraction, agriculture, and mining) than I did, which is likely 

because I only considered Scope I emissions. Regardless, because my distribution of carbon tax 
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burden is similar to a study that had better emissions data, my distribution of carbon tax burden 

is also likely reliable. 

This concentration of burden means that a carbon tax will only disrupt the high-emitting 

industries that it likely intends to disrupt and will not cause widespread economic damage. Given 

that 59% of the tax burden is borne by one SIC code (code 49), most of the ten industries that 

bear the highest carbon tax burden are large emitters, and only 32% of companies would bear a 

burden of over 7% of 2020 revenues over 5 years, the carbon tax would likely target its intended 

audience closely. These findings mean that a carbon tax may be an effective tool for regulators to 

curb GHG emissions without inflicting unnecessary damage on the American economy. 

Additionally, because my results indicate that the firms that are the most vulnerable to 

climate risk have the least oversight, regulators should consider regional banks’ exposures to 

climate risk. An easy path to accomplishing this goal would be expanding the scope of the 

CCAR stress test. The two banks in my sample that have the highest exposure to climate risk 

both used to be subject to the CCAR stress test, but no longer are. Additionally, all banks that are 

subject to the CCAR stress seem adequately prepared to handle climate risk.
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1. Citations for data included in reference list following format: “Bank Name (2020)…” 

Table 11. 
       

Financial Institutions’ Relative Losses due to a Carbon Tax   

Bank 

Losses as 
Percentage of 

Loan Base 

Losses as a 
Percentage of CET1 

Capital 

Losses as a Percentage 

of CCAR Scenarios1 

Regulatory Minimum 

CET1 Capital Ratio1 

Current CET1 

Ratio1 

CET1 Ratio 
Including Carbon 

Tax Losses 

CET1 Ratio 
Including Carbon 

Tax + CCAR Losses  

JP Morgan 0.42% 1.00% 8.72% 10.50% 13.82% 13.68% 9.79% 

Bank of America 0.39% 0.98% 5.92% 9.50% 11.94% 11.82% 9.16% 

Citibank 0.49% 5.95% 7.01% 10.00% 10.60% 9.96% 9.45% 

Wells Fargo & Co 0.26% 0.65% 2.78% 9.00% 11.94% 11.86% 8.22% 

US Bank NA 0.47% 1.61% 4.61% 6.50% 9.66% 9.51% 7.54% 

Comerica Bank 1.24% 7.90% N/A 6.50% 10.34% 9.52% N/A 

PNC Bank NA 0.29% 1.22% 4.20% 7.00% 12.16% 12.01% 9.53% 

Truist 0.27% 1.23% 4.07% 6.50% 10.00% 9.88% 7.72% 

KeyBank 0.61% 3.29% 10.72% 7.00% 11.10% 10.74% 7.55% 

Compass Bank 0.69% 3.20% N/A 6.50% 12.49% 12.09% N/A 

Goldman Sachs & Co 0.64% 0.31% 3.15% 9.50% 13.39% 13.35% 8.35% 

Regions Bank 0.43% 2.17% 6.00% 6.50% 9.84% 9.63% 6.99% 

Huntington Bank 0.40% 1.85% 5.32% 7.00% 10.00% 9.81% 7.90% 

Fifth Third Bank 0.23% 0.99% 2.13% 6.50% 10.34% 10.24% 7.45% 

Capital One Bank 0.11% 0.20% 1.20% 7.00% 13.67% 13.65% 7.04% 

Northern Trust 0.52% 0.56% 8.03% 6.50% 12.83% 12.75% 12.54% 

Morgan Stanley 0.04% 0.04% 0.81% 9.50% 17.36% 17.35% 12.37% 

Bank of New York Mellon 0.23% 0.12% 5.46% 8.50% 13.14% 13.13% 11.86% 

Ally Commercial Finance  0.01% 0.01% 0.05% 8.00% 10.64% 10.64% 7.40% 
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5.3 Limitations and Future Directions 

The first major limitation in my research is the scope of risks that were included in my 

model. Because physical risks are inversely correlated with transition risks, a more accurate 

model would consider the interaction between physical and transition risk. My model currently 

outputs that as carbon taxes increase, so does overall economic destruction. This relationship 

does not account for the fact that as carbon taxes increase, the rate of climate change and impact 

of physical risks decrease. If I were to include physical risk in my model, there would be less of 

a positive correlation, and potentially even a negative correlation, between carbon tax and 

economic destruction.  

Not only does my model fail to account for physical risk, but also some transition risks. 

Some forms of transition risk, such as legal risk, do not fit neatly into a carbon tax. In the 

example of legal risk, the costs are much less uniform, and therefore are not modeled as well by 

a carbon tax. Since a lawsuit is either won or lost and only filed in certain cases, it is not a 

definite cost like a carbon tax would be. Additionally, not all emissions are equally likely to 

result in a lawsuit, because many lawsuits are against companies that pollute locally (e.g., if a 

company were to pollute in a sparsely populated area, that company would be less likely to be 

sued) so there is a geographic factor in determining legal risk. If my model were to include 

transition risks that are not easily accounted for by a carbon tax, the impacts of climate change 

would be more severe. 

The second major limitation of my research is the accuracy of my data. As I discussed in 

the Data section, most emissions data are self-reported.  As such, the data can be incorrect due to 

poor data collection or to a desire to appear ecologically sustainable. Because I used self-

reported data from available companies to estimate the likely emissions of similar companies’, 
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my emissions numbers include an additional layer that will add error. Another source of error in 

my data was created by excluding companies for which I was unable to draw financial data. The 

exclusion of companies that do not appear in the DealScan or CapitalIQ dataset, may have 

skewed my data. The relatively small size of my final sample required that I scale losses to fit 

markets, which is a further inaccuracy. The inaccuracy of financial data could skew results either 

way, depending on what the data inaccuracy is. The data limitations in my work are in contrast to 

work done by European researchers, as Europe has better emissions disclosure frameworks and 

bank loan data from central banks. 

The third major limitation to my methodology was modelling simplifications that I made 

to be able to complete the project in the allotted timeframe. For example, assuming that only half 

of long-term debts should be counted towards liabilities in Merton’s model is a simplification 

that is not necessarily accurate. Similarly, I model portfolio companies’ attempts to mitigate their 

exposure to a climate task as having a binary effect in that there is no mitigation in my model’s 

time horizon and a complete mitigation after my model’s time horizon. To avoid having too 

many scenarios, I also fixed recovery rates at 0% and 69%, but the true recovery rate probably 

lies somewhere in between the two.  

The final, and potentially most influential limitation of my research was that I only 

considered Scope I emissions. This simplification meant that electricity generation companies 

were heavily penalized, while those who consume the electricity were not. Had I included Scope 

II and III emissions the breakdown of carbon tax burden by industry would have been materially 

different, and my results likely also would have been materially different. The clumping of risk 

in certain industries that defines my results would also likely be less pronounced since Scope II 

and III emissions are more evenly distributed than Scope I emissions. 



 

63 
 

In future research it will be important to consider physical risk. My model currently gives 

results that indicate that lower carbon taxes will create less economic disruption. However, this 

may misrepresent the truth: although we do not know what the optimal level of carbon tax is, 

there is not a simple inverse relationship between carbon tax and economic disruption. Since 

including physical risks would materially impact the relationship between carbon taxes and 

financial stability, it would be the first change that I would make to my model. 
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6. CONCLUSION 

Transition risk in the form of a carbon tax does not seem to pose a systematic threat to 

financial stability. A carbon tax would only cause a serious increase in probability of default for 

a select number of firms, concentrated in a select number of industries. On average, these select 

firms make up a small enough portion of financial institutions’ portfolios that a carbon tax 

should not put them in a precarious situation.  

However, as evidenced by the fact that certain financial institutions would fare better than 

others in a scenario with a carbon tax and the fact that certain financial institutions seem to be 

considering climate risk while others do not, transition risk could create sub-systemic shocks to 

certain financial institutions, regions, or industries. High levels of default in certain industries 

(i.e., electricity generation, air transportation, etc.) could also have knock-on effects throughout 

the larger economy and ultimately create financial risk. Therefore, moving forward, regulators 

should consider financial transition risk at a sub-systemic level. 
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APPENDIX A 
Full Tables of Average Probabilities of Default by Scenario 

 

Average Probability of Default by Year and Carbon Tax (Base Case Highlighted in Blue) 

  Year 1 Year 2 Year 3 Year 4 Year 5 

$0 8.32% 11.82% 14.92% 17.72% 20.26% 

$5 8.35% 11.85% 14.96% 17.77% 20.33% 

$10 8.37% 11.87% 15.00% 17.83% 20.39% 

$15 8.39% 11.89% 15.03% 17.88% 20.46% 

$20 8.40% 11.91% 15.07% 17.93% 20.52% 

$25 8.41% 11.94% 15.11% 17.98% 20.58% 

$30 8.42% 11.96% 15.14% 18.02% 20.64% 

$35 8.43% 11.98% 15.18% 18.07% 20.70% 

$40 8.44% 12.01% 15.22% 18.12% 20.76% 

$45 8.45% 12.03% 15.25% 18.17% 20.81% 

$50 8.46% 12.05% 15.29% 18.22% 20.87% 

$55 8.47% 12.08% 15.33% 18.26% 20.92% 

$60 8.48% 12.10% 15.36% 18.31% 20.98% 

$65 8.49% 12.12% 15.40% 18.36% 21.03% 

$70 8.50% 12.15% 15.43% 18.40% 21.09% 

$75 8.51% 12.17% 15.47% 18.45% 21.14% 

$80 8.52% 12.20% 15.51% 18.49% 21.19% 

$85 8.54% 12.22% 15.54% 18.54% 21.24% 

$90 8.55% 12.25% 15.58% 18.58% 21.29% 

$95 8.56% 12.27% 15.62% 18.63% 21.34% 

$100 8.57% 12.30% 15.65% 18.67% 21.39% 

$105 8.58% 12.32% 15.69% 18.71% 21.44% 

$110 8.59% 12.35% 15.72% 18.76% 21.49% 

$115 8.60% 12.37% 15.76% 18.80% 21.54% 

$120 8.62% 12.40% 15.79% 18.84% 21.59% 

$125 8.63% 12.42% 15.83% 18.88% 21.64% 

$130 8.64% 12.45% 15.86% 18.93% 21.68% 

$135 8.65% 12.47% 15.90% 18.97% 21.73% 

$140 8.66% 12.50% 15.93% 19.01% 21.78% 

$145 8.68% 12.52% 15.97% 19.05% 21.82% 

$150 8.69% 12.55% 16.00% 19.09% 21.87% 
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Median Probability of Default by Year and Carbon Tax (Base Case Highlighted in Blue) 

  Year 1 Year 2 Year 3 Year 4 Year 5 

$0 0.0195% 0.7368% 2.5836% 5.1234% 7.9533% 

$5 0.0199% 0.7586% 2.5861% 5.2912% 7.9947% 

$10 0.0199% 0.7587% 2.6236% 5.3052% 7.9948% 

$15 0.0204% 0.7835% 2.6573% 5.3192% 8.0150% 

$20 0.0207% 0.7933% 2.6574% 5.3671% 8.0429% 

$25 0.0207% 0.7963% 2.6575% 5.3673% 8.0513% 

$30 0.0208% 0.7977% 2.6576% 5.3675% 8.0597% 

$35 0.0208% 0.7990% 2.6577% 5.3752% 8.0680% 

$40 0.0208% 0.8004% 2.6578% 5.3893% 8.0764% 

$45 0.0216% 0.8109% 2.6579% 5.4023% 8.0901% 

$50 0.0224% 0.8112% 2.6642% 5.4023% 8.1139% 

$55 0.0225% 0.8115% 2.6925% 5.4023% 8.1244% 

$60 0.0225% 0.8118% 2.6934% 5.4310% 8.1349% 

$65 0.0226% 0.8120% 2.8017% 5.4327% 8.1658% 

$70 0.0226% 0.8123% 2.8241% 5.4739% 8.1664% 

$75 0.0226% 0.8126% 2.8250% 5.5161% 8.2436% 

$80 0.0227% 0.8129% 2.8402% 5.5178% 8.2438% 

$85 0.0227% 0.8397% 2.8407% 5.5194% 8.2447% 

$90 0.0228% 0.8581% 2.8631% 5.5277% 8.2449% 

$95 0.0228% 0.8689% 2.8680% 5.5281% 8.2450% 

$100 0.0229% 0.8690% 2.8681% 5.5822% 8.2452% 

$105 0.0229% 0.8690% 2.8682% 5.6361% 8.2801% 

$110 0.0232% 0.8691% 2.8684% 5.6362% 8.2819% 

$115 0.0239% 0.8691% 2.8804% 5.6364% 8.3180% 

$120 0.0239% 0.8691% 2.9679% 5.7583% 8.4715% 

$125 0.0239% 0.8692% 2.9681% 5.7635% 8.4733% 

$130 0.0239% 0.8702% 2.9684% 5.7687% 8.4751% 

$135 0.0239% 0.8702% 2.9687% 5.8671% 8.4768% 

$140 0.0241% 0.8702% 2.9689% 5.8673% 8.4786% 

$145 0.0261% 0.8702% 3.0112% 5.8674% 8.4804% 

$150 0.0261% 0.8708% 3.0113% 5.8676% 8.6113% 
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APPENDIX B 
Full Tables of Average Probabilities of Default by Scenario 

 

Average Marginal Probability of Default by Year and Carbon Tax (Base Case Highlighted in Blue) 
 

1 Year 2 Years 3 Years 4 Years 5 Years 

 $5  0.03% 0.03% 0.04% 0.05% 0.07% 

 $10  0.05% 0.05% 0.08% 0.10% 0.13% 

 $15  0.06% 0.08% 0.11% 0.16% 0.20% 

 $20  0.07% 0.10% 0.15% 0.21% 0.26% 

 $25  0.08% 0.12% 0.19% 0.26% 0.32% 

 $30  0.10% 0.14% 0.22% 0.30% 0.38% 

 $35  0.11% 0.16% 0.26% 0.35% 0.44% 

 $40  0.12% 0.19% 0.30% 0.40% 0.49% 

 $45  0.13% 0.21% 0.33% 0.45% 0.55% 

 $50  0.14% 0.23% 0.37% 0.50% 0.61% 

 $55  0.15% 0.26% 0.41% 0.54% 0.66% 

 $60  0.16% 0.28% 0.44% 0.59% 0.72% 

 $65  0.17% 0.31% 0.48% 0.64% 0.77% 

 $70  0.18% 0.33% 0.51% 0.68% 0.82% 

 $75  0.19% 0.35% 0.55% 0.73% 0.88% 

 $80  0.20% 0.38% 0.59% 0.77% 0.93% 

 $85  0.21% 0.40% 0.62% 0.82% 0.98% 

 $90  0.22% 0.43% 0.66% 0.86% 1.03% 

 $95  0.23% 0.45% 0.69% 0.91% 1.08% 

 $100  0.24% 0.48% 0.73% 0.95% 1.13% 

 $105  0.26% 0.50% 0.77% 0.99% 1.18% 

 $110  0.27% 0.53% 0.80% 1.04% 1.23% 

 $115  0.28% 0.55% 0.84% 1.08% 1.28% 

 $120  0.29% 0.58% 0.87% 1.12% 1.33% 

 $125  0.30% 0.60% 0.91% 1.16% 1.38% 

 $130  0.32% 0.63% 0.94% 1.21% 1.42% 

 $135  0.33% 0.66% 0.98% 1.25% 1.47% 

 $140  0.34% 0.68% 1.01% 1.29% 1.52% 

 $145  0.35% 0.71% 1.05% 1.33% 1.56% 

 $150  0.37% 0.73% 1.08% 1.37% 1.61%  
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Median Marginal Probability of Default by Year and Carbon Tax (Base Case Highlighted in Blue) 
 

1 Year 2 Years 3 Years 4 Years 5 Years 

 $5  0.0000% 0.0002% 0.0005% 0.0010% 0.0016% 

 $10  0.0000% 0.0003% 0.0011% 0.0020% 0.0031% 

 $15  0.0000% 0.0005% 0.0016% 0.0030% 0.0047% 

 $20  0.0000% 0.0007% 0.0022% 0.0042% 0.0065% 

 $25  0.0000% 0.0009% 0.0027% 0.0052% 0.0081% 

 $30  0.0001% 0.0010% 0.0033% 0.0063% 0.0097% 

 $35  0.0001% 0.0012% 0.0039% 0.0073% 0.0114% 

 $40  0.0001% 0.0014% 0.0045% 0.0083% 0.0130% 

 $45  0.0001% 0.0015% 0.0050% 0.0094% 0.0146% 

 $50  0.0001% 0.0017% 0.0056% 0.0104% 0.0162% 

 $55  0.0001% 0.0019% 0.0061% 0.0115% 0.0178% 

 $60  0.0001% 0.0020% 0.0067% 0.0125% 0.0195% 

 $65  0.0001% 0.0023% 0.0073% 0.0138% 0.0211% 

 $70  0.0001% 0.0025% 0.0078% 0.0148% 0.0227% 

 $75  0.0001% 0.0026% 0.0084% 0.0159% 0.0243% 

 $80  0.0001% 0.0028% 0.0089% 0.0170% 0.0259% 

 $85  0.0002% 0.0030% 0.0095% 0.0180% 0.0276% 

 $90  0.0002% 0.0032% 0.0101% 0.0194% 0.0293% 

 $95  0.0002% 0.0033% 0.0107% 0.0209% 0.0310% 

 $100  0.0002% 0.0035% 0.0112% 0.0221% 0.0327% 

 $105  0.0002% 0.0037% 0.0118% 0.0232% 0.0343% 

 $110  0.0002% 0.0039% 0.0124% 0.0243% 0.0360% 

 $115  0.0002% 0.0041% 0.0129% 0.0254% 0.0376% 

 $120  0.0002% 0.0042% 0.0135% 0.0265% 0.0393% 

 $125  0.0002% 0.0044% 0.0141% 0.0276% 0.0409% 

 $130  0.0002% 0.0046% 0.0146% 0.0287% 0.0425% 

 $135  0.0003% 0.0048% 0.0152% 0.0298% 0.0442% 

 $140  0.0003% 0.0049% 0.0158% 0.0309% 0.0458% 

 $145  0.0003% 0.0051% 0.0163% 0.0320% 0.0474% 

 $150  0.0003% 0.0053% 0.0169% 0.0331% 0.0491% 
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APPENDIX C 
Relative Carbon Tax Burdens Overall and by Industry 

Carbon Tax Liability as a Percentage of Liabilities 

 1 Year 2 Years 3 Years 4 Years 5 Years 

5 0.59% 0.88% 1.18% 1.47% 1.77% 

10 1.18% 1.77% 2.36% 2.95% 3.54% 

15 1.77% 2.65% 3.54% 4.42% 5.31% 

20 2.36% 3.54% 4.72% 5.89% 7.07% 

25 2.95% 4.42% 5.89% 7.37% 8.84% 

30 3.54% 5.31% 7.07% 8.84% 10.61% 

35 4.13% 6.19% 8.25% 10.32% 12.38% 

40 4.72% 7.07% 9.43% 11.79% 14.15% 

45 5.31% 7.96% 10.61% 13.26% 15.92% 

50 5.89% 8.84% 11.79% 14.74% 17.68% 

55 6.48% 9.73% 12.97% 16.21% 19.45% 

60 7.07% 10.61% 14.15% 17.68% 21.22% 

65 7.66% 11.49% 15.33% 19.16% 22.99% 

70 8.25% 12.38% 16.51% 20.63% 24.76% 

75 8.84% 13.26% 17.68% 22.11% 26.53% 

80 9.43% 14.15% 18.86% 23.58% 28.29% 

85 10.02% 15.03% 20.04% 25.05% 30.06% 

90 10.61% 15.92% 21.22% 26.53% 31.83% 

95 11.20% 16.80% 22.40% 28.00% 33.60% 

100 11.79% 17.68% 23.58% 29.47% 35.37% 

105 12.38% 18.57% 24.76% 30.95% 37.14% 

110 12.97% 19.45% 25.94% 32.42% 38.91% 

115 13.56% 20.34% 27.12% 33.90% 40.67% 

120 14.15% 21.22% 28.29% 35.37% 42.44% 

125 14.74% 22.11% 29.47% 36.84% 44.21% 

130 15.33% 22.99% 30.65% 38.32% 45.98% 

135 15.92% 23.87% 31.83% 39.79% 47.75% 

140 16.51% 24.76% 33.01% 41.26% 49.52% 

145 17.09% 25.64% 34.19% 42.74% 51.28% 

150 17.68% 26.53% 35.37% 44.21% 53.05% 
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APPENDIX D 

Loan Losses by Scenario 

 

Unscaled Bank Losses – 0% Recovery  

($MM) 

 1 Year 2 Years 3 Years 4 Years 5 Years 

$5.00 320 317 427 578 734 

$10.00 508 570 826 1,136 1,439 

$15.00 658 812 1,223 1,686 2,124 

$20.00 791 1,053 1,619 2,228 2,793 

$25.00 916 1,295 2,015 2,764 3,448 

$30.00 1,034 1,538 2,411 3,294 4,091 

$35.00 1,150 1,784 2,807 3,819 4,723 

$40.00 1,264 2,032 3,202 4,339 5,346 

$45.00 1,376 2,282 3,598 4,855 5,960 

$50.00 1,489 2,534 3,993 5,367 6,565 

$55.00 1,601 2,789 4,387 5,874 7,164 

$60.00 1,713 3,046 4,782 6,377 7,755 

$65.00 1,827 3,305 5,175 6,877 8,339 

$70.00 1,941 3,566 5,568 7,373 8,916 

$75.00 2,056 3,829 5,960 7,865 9,487 

$80.00 2,172 4,094 6,352 8,354 10,052 

$85.00 2,289 4,360 6,742 8,840 10,611 

$90.00 2,408 4,628 7,132 9,322 11,165 

$95.00 2,529 4,897 7,521 9,800 11,712 

$100.00 2,651 5,168 7,908 10,276 12,254 

$105.00 2,774 5,440 8,295 10,748 12,791 

$110.00 2,899 5,713 8,681 11,217 13,323 

$115.00 3,026 5,987 9,065 11,682 13,849 

$120.00 3,155 6,263 9,449 12,145 14,370 

$125.00 3,285 6,539 9,831 12,604 14,886 

$130.00 3,417 6,815 10,211 13,060 15,398 

$135.00 3,551 7,093 10,591 13,513 15,905 

$140.00 3,687 7,371 10,969 13,963 16,407 

$145.00 3,825 7,649 11,346 14,410 16,904 

$150.00 3,964 7,929 11,722 14,854 17,397 
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Scaled Bank Losses (Commercial and Industrial) – 0% Recovery  

($MM) 

 1 Year 2 Years 3 Years 4 Years 5 Years 

$5.00 759 753 1,013 1,371 1,741 

$10.00 1,204 1,351 1,959 2,694 3,413 

$15.00 1,560 1,926 2,900 3,997 5,037 

$20.00 1,876 2,497 3,839 5,282 6,622 

$25.00 2,171 3,070 4,778 6,553 8,175 

$30.00 2,452 3,647 5,716 7,810 9,699 

$35.00 2,727 4,229 6,655 9,055 11,198 

$40.00 2,996 4,817 7,593 10,289 12,674 

$45.00 3,263 5,410 8,530 11,511 14,130 

$50.00 3,529 6,009 9,467 12,724 15,566 

$55.00 3,796 6,613 10,402 13,927 16,985 

$60.00 4,062 7,222 11,337 15,120 18,386 

$65.00 4,331 7,837 12,270 16,305 19,771 

$70.00 4,601 8,455 13,201 17,481 21,140 

$75.00 4,874 9,079 14,131 18,648 22,494 

$80.00 5,150 9,706 15,059 19,808 23,834 

$85.00 5,428 10,338 15,985 20,959 25,159 

$90.00 5,710 10,973 16,909 22,102 26,471 

$95.00 5,996 11,612 17,831 23,237 27,769 

$100.00 6,285 12,254 18,750 24,364 29,055 

$105.00 6,577 12,898 19,667 25,483 30,327 

$110.00 6,874 13,546 20,582 26,595 31,587 

$115.00 7,175 14,196 21,493 27,699 32,835 

$120.00 7,480 14,848 22,402 28,795 34,071 

$125.00 7,789 15,503 23,308 29,884 35,295 

$130.00 8,103 16,159 24,211 30,966 36,508 

$135.00 8,420 16,817 25,111 32,040 37,709 

$140.00 8,742 17,476 26,008 33,106 38,900 

$145.00 9,068 18,137 26,901 34,166 40,079 

$150.00 9,398 18,798 27,792 35,218 41,247 
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Scaled Bank Losses (Commercial, Industrial and Industrial Real Estate) – 0% Recovery  

($MM) 

 1 Year 2 Years 3 Years 4 Years 5 Years 

$5.00 1,477 1,465 1,971 2,668 3,389 

$10.00 2,344 2,629 3,814 5,243 6,642 

$15.00 3,037 3,748 5,644 7,778 9,803 

$20.00 3,652 4,860 7,471 10,281 12,888 

$25.00 4,225 5,975 9,298 12,754 15,910 

$30.00 4,773 7,098 11,125 15,201 18,876 

$35.00 5,307 8,231 12,952 17,624 21,794 

$40.00 5,832 9,375 14,778 20,025 24,668 

$45.00 6,351 10,530 16,602 22,404 27,501 

$50.00 6,869 11,695 18,425 24,764 30,296 

$55.00 7,387 12,871 20,246 27,105 33,057 

$60.00 7,907 14,057 22,065 29,428 35,784 

$65.00 8,429 15,252 23,881 31,734 38,479 

$70.00 8,955 16,457 25,694 34,023 41,144 

$75.00 9,486 17,670 27,503 36,295 43,780 

$80.00 10,023 18,891 29,309 38,551 46,387 

$85.00 10,565 20,120 31,112 40,791 48,967 

$90.00 11,113 21,357 32,910 43,016 51,520 

$95.00 11,669 22,600 34,704 45,225 54,047 

$100.00 12,231 23,849 36,493 47,418 56,548 

$105.00 12,802 25,104 38,278 49,597 59,025 

$110.00 13,379 26,364 40,057 51,761 61,478 

$115.00 13,965 27,629 41,832 53,909 63,906 

$120.00 14,558 28,899 43,601 56,043 66,312 

$125.00 15,160 30,172 45,364 58,163 68,694 

$130.00 15,770 31,450 47,121 60,268 71,054 

$135.00 16,388 32,730 48,873 62,358 73,393 

$140.00 17,014 34,013 50,618 64,434 75,709 

$145.00 17,649 35,299 52,357 66,496 78,004 

$150.00 18,292 36,587 54,090 68,544 80,279 
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Unscaled Bank Losses – 69% Recovery  

($MM) 

 1 Year 2 Years 3 Years 4 Years 5 Years 

$5.00 99 98 132 179 228 

$10.00 157 177 256 352 446 

$15.00 204 252 379 523 659 

$20.00 245 326 502 691 866 

$25.00 284 401 625 857 1,069 

$30.00 321 477 747 1,021 1,268 

$35.00 357 553 870 1,184 1,464 

$40.00 392 630 993 1,345 1,657 

$45.00 427 707 1,115 1,505 1,847 

$50.00 461 786 1,238 1,664 2,035 

$55.00 496 865 1,360 1,821 2,221 

$60.00 531 944 1,482 1,977 2,404 

$65.00 566 1,025 1,604 2,132 2,585 

$70.00 602 1,106 1,726 2,286 2,764 

$75.00 637 1,187 1,848 2,438 2,941 

$80.00 673 1,269 1,969 2,590 3,116 

$85.00 710 1,352 2,090 2,740 3,290 

$90.00 747 1,435 2,211 2,890 3,461 

$95.00 784 1,518 2,331 3,038 3,631 

$100.00 822 1,602 2,452 3,186 3,799 

$105.00 860 1,686 2,571 3,332 3,965 

$110.00 899 1,771 2,691 3,477 4,130 

$115.00 938 1,856 2,810 3,622 4,293 

$120.00 978 1,941 2,929 3,765 4,455 

$125.00 1,018 2,027 3,047 3,907 4,615 

$130.00 1,059 2,113 3,166 4,049 4,773 

$135.00 1,101 2,199 3,283 4,189 4,930 

$140.00 1,143 2,285 3,400 4,329 5,086 

$145.00 1,186 2,371 3,517 4,467 5,240 

$150.00 1,229 2,458 3,634 4,605 5,393 
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Scaled Bank Losses (Commercial and Industrial) – 69% Recovery  

($MM) 

 1 Year 2 Years 3 Years 4 Years 5 Years 

$5.00 235 233 314 425 540 

$10.00 373 419 607 835 1,058 

$15.00 484 597 899 1,239 1,561 

$20.00 582 774 1,190 1,637 2,053 

$25.00 673 952 1,481 2,031 2,534 

$30.00 760 1,131 1,772 2,421 3,007 

$35.00 845 1,311 2,063 2,807 3,471 

$40.00 929 1,493 2,354 3,189 3,929 

$45.00 1,012 1,677 2,644 3,569 4,380 

$50.00 1,094 1,863 2,935 3,944 4,826 

$55.00 1,177 2,050 3,225 4,317 5,265 

$60.00 1,259 2,239 3,514 4,687 5,700 

$65.00 1,343 2,429 3,804 5,055 6,129 

$70.00 1,426 2,621 4,092 5,419 6,553 

$75.00 1,511 2,814 4,381 5,781 6,973 

$80.00 1,596 3,009 4,668 6,140 7,388 

$85.00 1,683 3,205 4,955 6,497 7,799 

$90.00 1,770 3,402 5,242 6,851 8,206 

$95.00 1,859 3,600 5,528 7,203 8,609 

$100.00 1,948 3,799 5,813 7,553 9,007 

$105.00 2,039 3,999 6,097 7,900 9,401 

$110.00 2,131 4,199 6,380 8,244 9,792 

$115.00 2,224 4,401 6,663 8,587 10,179 

$120.00 2,319 4,603 6,945 8,927 10,562 

$125.00 2,415 4,806 7,226 9,264 10,942 

$130.00 2,512 5,009 7,505 9,599 11,317 

$135.00 2,610 5,213 7,784 9,932 11,690 

$140.00 2,710 5,418 8,062 10,263 12,059 

$145.00 2,811 5,622 8,339 10,591 12,424 

$150.00 2,914 5,828 8,615 10,918 12,787 
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Scaled Bank Losses (Commercial, Industrial and Industrial Real Estate) – 69% Recovery 

($MM) 

 1 Year 2 Years 3 Years 4 Years 5 Years 

$5.00 458 454 611 827 1,051 

$10.00 727 815 1,182 1,625 2,059 

$15.00 941 1,162 1,749 2,411 3,039 

$20.00 1,132 1,507 2,316 3,187 3,995 

$25.00 1,310 1,852 2,882 3,954 4,932 

$30.00 1,480 2,200 3,449 4,712 5,852 

$35.00 1,645 2,552 4,015 5,463 6,756 

$40.00 1,808 2,906 4,581 6,208 7,647 

$45.00 1,969 3,264 5,147 6,945 8,525 

$50.00 2,129 3,625 5,712 7,677 9,392 

$55.00 2,290 3,990 6,276 8,403 10,248 

$60.00 2,451 4,358 6,840 9,123 11,093 

$65.00 2,613 4,728 7,403 9,838 11,929 

$70.00 2,776 5,102 7,965 10,547 12,755 

$75.00 2,941 5,478 8,526 11,251 13,572 

$80.00 3,107 5,856 9,086 11,951 14,380 

$85.00 3,275 6,237 9,645 12,645 15,180 

$90.00 3,445 6,621 10,202 13,335 15,971 

$95.00 3,617 7,006 10,758 14,020 16,754 

$100.00 3,792 7,393 11,313 14,700 17,530 

$105.00 3,968 7,782 11,866 15,375 18,298 

$110.00 4,148 8,173 12,418 16,046 19,058 

$115.00 4,329 8,565 12,968 16,712 19,811 

$120.00 4,513 8,959 13,516 17,373 20,557 

$125.00 4,700 9,353 14,063 18,030 21,295 

$130.00 4,889 9,749 14,608 18,683 22,027 

$135.00 5,080 10,146 15,151 19,331 22,752 

$140.00 5,274 10,544 15,692 19,975 23,470 

$145.00 5,471 10,943 16,231 20,614 24,181 

$150.00 5,670 11,342 16,768 21,249 24,886 
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APPENDIX E 
Losses by Financial Institution 

Derivation of Institution Loan Losses 

Bank Losses ($MM) 

Loan Base 

Accounted 

For ($MM) 

Global Loan Base 

($MM) 

Percentage 

of 

American 

Revenue 

American Loan 

Base ($MM) 

Adjusted Losses 

($MM) 

JP Morgan 681.39 163,590.56 649,583.00 76.08% 494,201.04 2,058.46 

Bank of America 601.83 153,507.41 499,335.00 88.36% 441,232.60 1,729.86 

Citibank 528.97 108,972.48 387,044.00 48.90% 189,271.17 918.75 

Wells Fargo & 

Co 270.66 104,804.13 347,064.00 100.00% 347,064.00 896.30 

US Bancorp 262.98 56,328.65 131,343.00 100.00% 131,343.00 613.20 

Comerica Bank 63.32 5,115.85 44,185.00 100.00% 44,185.00 546.91 

PNC Bank NA 147.82 51,178.51 167,203.00 100.00% 167,203.00 482.92 

Truist 171.15 62,773.03 170,189.00 100.00% 170,189.00 464.03 

KeyBank 127.80 20,851.07 69,993.00 100.00% 69,993.00 428.99 

Compass Bank 38.59 5,615.59 40,170.40 100.00% 40,170.40 276.06 

Goldman Sachs 

& Co 685.21 107,356.65 64,050.00 61.73% 39,539.66 252.36 

Regions Bank 50.62 11,907.12 53,669.00 100.00% 53,669.00 228.16 

Huntington Bank 19.53 4,922.03 41,537.00 100.00% 41,537.00 164.80 

Fifth Third Bank 96.65 42,173.28 63,182.00 100.00% 63,182.00 144.79 

Capital One 

Bank 18.69 17,302.18 75,780.00 100.00% 75,780.00 81.85 

Northern Trust 31.21 6,058.26 15,262.00 71.52% 10,915.15 56.24 

Morgan Stanley 

Bank NA 1.94 5,182.07 103,351.00 72.65% 75,086.97 28.18 

Bank of New 

York Mellon 11.18 4,837.29 18,730.00 63.12% 11,822.36 27.31 

Ally Commercial 

Finance LLC 0.02 360.72 24,324.00 97.96% 23,828.61 1.33 
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APPENDIX F 
Python Code for Calculating Probabilities of Default 

 

#Import statements 

import numpy as np 

import csv 

import math 

import sqlite3 

from scipy.stats import norm 

from scipy import optimize 

from sympy.solvers import solve 

from sympy import Symbol 

from sympy import log as sympyLog 

 

#Sets up database access 

db = sqlite3.connect("thesis.sqlite") 

db.row_factory = sqlite3.Row 

cursor = db.cursor() 

 

#Assigns average yearly emissions taxbase. First, checks CDP data to see if 

company is included. If not, assigns emissions based on closesest SIC 

industry average 

def getEmissions(SICCode, ticker, revenue, individualMarketCap): 

     

    #Sets variables 

    majorCount = 0 

    majorEmissions = 0 

    industryCount = 0 

    industryEmissions = 0 

     

    #Checks if company is in CDP data 

    query = """SELECT AVG(D.Scope1Emissions) 

                FROM CDPAccountInfoV2 AI, CDPDataV2 D 

                WHERE D.AccountNumber = AI.AccountNumber AND AI.Ticker = 

"""+"\""+ticker+"\""+""" AND CAST(D.Scope1Emissions AS INTEGER) >= 0 AND 

AI.Country = "United States of America" """ 

    cursor.execute(query) 

     

    companyEmissions = cursor.fetchall() 

     

    #Returns emissions of company is in CDP data 

    if companyEmissions[0][0]!= None: 

        print("actual emissions") 

        print(SICCode) 

        return companyEmissions[0][0] 

         

    #Gets the emissions data for all industries that are in the same SIC 

major group (meaning that the first two digits of the SIC code match) 

    SICCode2="\""+str(SICCode)[0:2]+"%\"" 

    query = """SELECT AI.Industry, avg(D.Scope1Emissions)/avg(AI.Revenue) as 

CO2ePerRevDollar 

                    FROM CDPAccountInfoV2 AI, CDPDataV2 D 

                    WHERE AI.AccountNumber = D.AccountNumber AND AI.Industry 

<> "(Invalid Identifier)" AND AI.Revenue <> "(Invalid Identifier)" AND 

AI.Revenue > 0 AND CAST(D.Scope1Emissions AS INTEGER) >0 AND AI.Industry 

LIKE"""+SICCode2+""" 
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                    GROUP BY AI.Industry 

                    ORDER BY CO2ePerRevDollar DESC""" 

    cursor.execute(query) 

    emissionsPerDollar = cursor.fetchall() 

     

    #returns 0 if there is no CDP data on the major SIC group 

    if len(emissionsPerDollar) == 0: 

         

        print("no match") 

        print(SICCode) 

        return -1 

    for row in emissionsPerDollar: 

        SicCode = str(row[0]) 

        #returns emissions if there is data on the exact 4-digit SIC code 

        if int(SicCode) == int(SICCode): 

            print("actual industry") 

            return row[1]*revenue 

        #If there is not data on the exact SIC code, proceeds to calculate 

industry/major average 

        if SicCode[0:3] == str(SICCode)[0:3]: 

            industryCount+=1 

            industryEmissions+=row[1] 

            continue 

        majorCount+=1 

        majorEmissions+=row[1] 

     

    #returns emissions if there is data on the 3-digit SIC industry 

    if industryCount > 0: 

        print("3 digits") 

        return industryEmissions*revenue/industryCount 

    #returns emissions if there is data on the 2-digit SIC major 

    print("2 digits") 

    return majorEmissions*revenue/majorCount 

 

 

 

def mertonSolver(initAssetVolatility, initAssetValue, companyLiabilities, 

riskFreeRate, Time,equityValues,mertonCount, tradingDays, marketCap, 

equityVolatility): 

     

    if mertonCount > 50: 

        print("fail") 

        return -1 

     

    #formulas from Black-Scholes model 

    assetValues = [] 

    for i in equityValues: 

        def equations(AssetValue): 

            d1 = (np.log(AssetValue[0]/companyLiabilities) + 

(riskFreeRate+initAssetVolatility**2/2)*Time)/(initAssetVolatility * 

np.sqrt(Time)) 

            d2 = (np.log(AssetValue[0]/companyLiabilities) + 

(riskFreeRate+initAssetVolatility**2/2)*Time)/(initAssetVolatility * 

np.sqrt(Time)) - initAssetVolatility * np.sqrt(Time) 

            nd1 = norm.cdf(d1) 

            nd2 = norm.cdf(d2) 
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            equityValue0 = AssetValue[0]*nd1 - np.exp(-

riskFreeRate*Time)*companyLiabilities*nd2 

            return abs(i - equityValue0) 

        ans = optimize.root(equations, [initAssetValue]) 

        #print(i+companyLiabilities) 

        #print(ans) 

        if not ans.success: 

            print("failure") 

            print(ans.message) 

            print("") 

            return -1 

        assetValues.append(ans.x[0]) 

         

    assetReturns = [] 

    count = 0 

    for i in assetValues: 

        if count == 0: 

            count +=1 

            continue 

        assetReturns.append(assetValues[count-1]/i) 

        count+=1 

         

    lnAssetReturns = [] 

    count = 0 

     

    for i in assetReturns: 

        lnAssetReturns.append(np.log(float(i))) 

    newAssetVolatility = np.nanstd(lnAssetReturns)*math.sqrt(tradingDays) 

     

    if (abs(newAssetVolatility - initAssetVolatility) < .001): 

 

        #print("new asset Volatility") 

        #print(newAssetVolatility) 

        ans = [newAssetVolatility, assetValues[0]] 

        return ans 

    #print("old asset volatility") 

    #print(initAssetVolatility) 

    #print("new asset volatility") 

    #print(newAssetVolatility) 

    mertonCount +=1 

    return mertonSolver(newAssetVolatility, assetValues[0], 

companyLiabilities, riskFreeRate, Time,equityValues, mertonCount, 

tradingDays, marketCap, equityVolatility) 

 

 

 

def solvePD(carbonTax, years): 

     

    #array to be returned with results in form [[ticker1, PD1], [ticker2, 

PD2], ... [tickerN, PDN]] 

    results = [] 

     

     

    #arrays that will hold the standard deviation of natural log of returns 

and tickers at the same indexes 

 

    nonZeroMarketCaps = [] 
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    rawMarketCaps = [] 

    lnReturns = [] 

    stdvLnReturns = [] 

    liabilities = [] 

    tickers = [] 

    marketCap = [] 

    borrowerIDs = [] 

    sicCodes = [] 

    revenues = [] 

     

    #number of trading days used to calculate yearly volatility 

    tradingDays = 252 

    riskFreeRate = 0.02 

    Time = 1 

    minimumTradingDays = 40 

     

    with open('lnEquityReturns_v3.csv') as csv_file: 

        #puts tickers in array 

        csv_reader = csv.reader(csv_file, delimiter=',') 

        count = 0 

        for row in csv_reader: 

            if row[0]!="" and count>0: 

                tickers.append(row[1]) 

                 

            count+=1 

             

        #takes input of ln returns for 1 year and ads standard deviation to 

stdvLnReturns. At this point, daily volatility is in stdvLnReturns 

        my_data = np.genfromtxt('lnEquityReturns_v3.csv', delimiter=',') 

        for row in my_data: 

            if not np.isnan(row[3]): 

                rawMarketCaps.append(row[7:-1]) 

                liabilities.append(row[3]) 

                marketCap.append(row[4]) 

                sicCodes.append(row[0]) 

                revenues.append(row[5]) 

                borrowerIDs.append(row[6]) 

                 

         

        #Gets rid of all days without data 

        for row in rawMarketCaps: 

            tempArray = [] 

            for mc in row: 

                if mc !=0: 

                    tempArray.append(mc) 

            nonZeroMarketCaps.append(tempArray) 

             

        #Finds daily ln(returns) 

        for row in nonZeroMarketCaps: 

            tempArray = [] 

            count = 0 

            for mc in row: 

                if count == 0: 

                    count +=1 

                    continue 

                lnRet = np.log(row[count-1]/mc) 

                #Handles case if market cap didn't change day-over-day 
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                if lnRet != 0: 

                    tempArray.append(lnRet) 

                count +=1 

            lnReturns.append(tempArray) 

             

       

        # Calculates yearly equity volatility, inputing -1 if there are less 

than minimumTradingDays of usable data 

        for row in lnReturns: 

            if len(row)<minimumTradingDays-1: 

                stdvLnReturns.append(-1) 

                continue 

            stdvLnReturns.append(np.nanstd(row)*math.sqrt(tradingDays)) 

             

    count = 0 

    zeroliabilities= 0 

    for i in stdvLnReturns: 

         

        #Accounts for companies without sufficient data 

        #if count > 4: 

         #   count+=1 

          #  continue 

        if i == -1: 

            count+=1 

            continue 

        volatility = i 

        ticker = tickers[count] 

        revenue = revenues[count] 

        equityValue = marketCap[count] 

        companyLiabilities = liabilities[count]  

        emissions = getEmissions(sicCodes[count], ticker, revenue, 

equityValue) 

        print(ticker) 

         

        if companyLiabilities == 0 or companyLiabilities == np.nan or 

emissions == -1 or revenue == 0: 

            zeroliabilities+=1 

            count+=1 

            continue     

        initAssetValue = equityValue+companyLiabilities 

        initAssetVolatility = equityValue*volatility/initAssetValue 

         

        if initAssetVolatility == np.nan: 

            count+=1 

            continue 

                 

        mertonOutput = mertonSolver(initAssetVolatility, initAssetValue, 

companyLiabilities, riskFreeRate, Time, nonZeroMarketCaps[count], 0, 

tradingDays, equityValue, volatility) 

         

        if mertonOutput == -1: 

            count+=1 

            continue 

         

        assetValue = mertonOutput[1] 

        assetVolatility = mertonOutput[0] 

        secondRiskFreeRate = 0.08 
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        for y in years: 

            Time = y 

            for tax in carbonTax: 

                taxLiability = (emissions*tax/1000000)+ 

(emissions*tax/1000000)*(Time-1)/2 

                if Time == 1: 

                    taxLiability = emissions*tax/1000000 

                     

                d1 = (np.log(assetValue/(companyLiabilities+taxLiability)) + 

(secondRiskFreeRate+assetVolatility**2/2)*Time)/(assetVolatility * 

np.sqrt(Time)) 

                 

                d2 = d1 - assetVolatility * np.sqrt(Time) 

                nd1 = norm.cdf(d1) 

                nd2 = norm.cdf(d2) 

         

                result = [ticker,tax, y, 1-nd2, borrowerIDs[count], 

taxLiability, companyLiabilities, sicCodes[count], emissions] 

                results.append(result) 

        count+=1 

    return(results) 

allResults = solvePD([0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 

70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 

150], [1,2,3,4,5]) 

 

cursor.execute("""DROP TABLE IF EXISTS preCarbonTaxPDs""") 

cursor.execute("""DROP TABLE IF EXISTS postCarbonTaxPDs""") 

 

cursor.execute(""" 

    CREATE TABLE preCarbonTaxPDs (  

    Ticker String, 

    carbonTax Int, 

    year Int, 

    pd Float, 

    borrowerCompanyID Int, 

    taxLiability Int, 

    Liabilities Int, 

    sicCode Int, 

    emissions Int 

    ) 

""") 

 

for result in allResults: 

    cursor.execute("""INSERT INTO preCarbonTaxPDs VALUES (?, ?, ?, ?, ?, ?, 

?,?, ?)""", (result[0], result[1], result[2], result[3], result[4], 

result[5], result[6], result[7], result[8])) 

 

db.commit() 

db.close() 
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APPENDIX G 
Derivation of Black Scholes Option Pricing 

The Black Scholes option pricing model is a formula for calculating the price of 

European all options. European call options are contracts that give holders the options to buy an 

equity at a fixed price (strike price) on a fixed date (exercise date). The general intuition for this 

model is that such an option should be worth the difference between the share price on the 

exercise date and the strike price, discounted back to the present. Because the Black Scholes 

model assumes a risk-free world (meaning that all stocks should grow at the risk-free rate), if all 

stocks grow at the same rate, the price of the call option should be represented by Formula 1, 

where c is the price of the call option, S0 is the current stock price, r is the risk-free rate, t is the 

time before the exercise date, and k is the strike price. In this model, where all equities grow at 

the same rate, the price of the option is the maximum of zero and difference between the stock 

price and discounted strike price. 

Formula 1 

𝑐 = 𝑀𝑎𝑥((𝑆0𝑒𝑟𝑡 − 𝑘)𝑒−𝑟𝑡, 0) 

 

Formula 1 can then be simplified as shown in Formula 2.  

 

Formula 2 

𝑐 = 𝑀𝑎𝑥(𝑆0 − 𝑘𝑒−𝑟𝑡, 0) 

 

However, not all equities grow at the same rate, and Formula 2 can be modified to 

include the possibility some equity values grow at a rate different than the risk-free rate. By 

introducing uncertainty in equity performance, one can no longer know whether the option 
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holder will pay the strike price or what the equity value will be on the exercise date. Therefore, 

one must weight ke-rt (the discounted strike price) by the probability that the option will be 

exercised, and one must weight S0 (how much the investor expects to get from selling the stock 

after exercising the option) by the probability that the option is worth less than zero, assuming 

returns follow a normal distribution. The probability that the option will be exercised (i.e., the 

probability that the stock will be higher than the strike price) is equal to the cumulative normal 

function of d2, as described in Formula 4, and the probability the amount the investor expects to 

get from selling the call option is equal to the cumulative normal function of d1, as described in 

Formula 5. In both these equations, 𝜎 is equal to equity volatility. 

 

Formula 3 

𝑑1 = ln (
𝑆0

𝑘
) +

𝑟+
𝜎
2

2
∗ 𝑡

𝜎 ∗ √𝑡
2  

Formula 4 

𝑑2 = 𝑑1 − 𝜎 ∗  √𝑡
2

 

 

Putting Formulas 3 and 4 together with Formula 2, one can derive that the price of a 

European call option is equal to Formula 5. 

 

Formula 5 

𝑐 = 𝑆0 ∗ 𝑁(𝑑1) − 𝑘𝑒−𝑟𝑡 ∗ 𝑁(𝑑2) 
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APPENDIX H 

Relative Loan Losses 

 

Commercial, Industrial, and Commercial Real Estate Bank Losses as a Percentage of 2020 CCAR 

Losses – 0% Recovery  

(%) 

 1 Year 2 Years 3 Years 4 Years 5 Years 

$5.00 0.32 0.32 0.43 0.58 0.74 

$10.00 0.51 0.57 0.83 1.15 1.45 

$15.00 0.66 0.82 1.23 1.70 2.14 

$20.00 0.80 1.06 1.63 2.25 2.82 

$25.00 0.92 1.31 2.03 2.79 3.48 

$30.00 1.04 1.55 2.43 3.32 4.12 

$35.00 1.16 1.80 2.83 3.85 4.76 

$40.00 1.27 2.05 3.23 4.37 5.39 

$45.00 1.39 2.30 3.63 4.89 6.01 

$50.00 1.50 2.55 4.02 5.41 6.62 

$55.00 1.61 2.81 4.42 5.92 7.22 

$60.00 1.73 3.07 4.82 6.43 7.82 

$65.00 1.84 3.33 5.22 6.93 8.41 

$70.00 1.96 3.59 5.61 7.43 8.99 

$75.00 2.07 3.86 6.01 7.93 9.56 

$80.00 2.19 4.13 6.40 8.42 10.13 

$85.00 2.31 4.39 6.80 8.91 10.70 

$90.00 2.43 4.66 7.19 9.40 11.25 

$95.00 2.55 4.94 7.58 9.88 11.81 

$100.00 2.67 5.21 7.97 10.36 12.35 

$105.00 2.80 5.48 8.36 10.83 12.89 

$110.00 2.92 5.76 8.75 11.31 13.43 

$115.00 3.05 6.04 9.14 11.78 13.96 

$120.00 3.18 6.31 9.52 12.24 14.48 

$125.00 3.31 6.59 9.91 12.70 15.01 

$130.00 3.44 6.87 10.29 13.16 15.52 

$135.00 3.58 7.15 10.68 13.62 16.03 

$140.00 3.72 7.43 11.06 14.07 16.54 

$145.00 3.86 7.71 11.44 14.52 17.04 

$150.00 4.00 7.99 11.82 14.97 17.54 
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Minimum CET1 Ratio Under 2020 CCAR Severely Adverse Scenario with Climate Losses  

– 0% Recovery, Scaled to Commercial, Industrial, and Commercial Real Estate  

(%) 

 1 Year 2 Years 3 Years 4 Years 5 Years 

$5.00 9.59 9.59 9.59 9.58 9.58 

$10.00 9.59 9.59 9.58 9.57 9.56 

$15.00 9.58 9.58 9.57 9.56 9.54 

$20.00 9.58 9.57 9.56 9.54 9.53 

$25.00 9.58 9.57 9.55 9.53 9.51 

$30.00 9.57 9.56 9.54 9.51 9.49 

$35.00 9.57 9.55 9.53 9.50 9.48 

$40.00 9.57 9.55 9.52 9.49 9.46 

$45.00 9.56 9.54 9.51 9.47 9.44 

$50.00 9.56 9.53 9.50 9.46 9.43 

$55.00 9.56 9.53 9.49 9.45 9.41 

$60.00 9.56 9.52 9.47 9.43 9.40 

$65.00 9.55 9.51 9.46 9.42 9.38 

$70.00 9.55 9.51 9.45 9.41 9.37 

$75.00 9.55 9.50 9.44 9.39 9.35 

$80.00 9.54 9.49 9.43 9.38 9.34 

$85.00 9.54 9.49 9.42 9.37 9.32 

$90.00 9.54 9.48 9.41 9.36 9.31 

$95.00 9.53 9.47 9.40 9.34 9.29 

$100.00 9.53 9.46 9.39 9.33 9.28 

$105.00 9.53 9.46 9.38 9.32 9.26 

$110.00 9.52 9.45 9.37 9.31 9.25 

$115.00 9.52 9.44 9.36 9.29 9.24 

$120.00 9.52 9.44 9.35 9.28 9.22 

$125.00 9.51 9.43 9.34 9.27 9.21 

$130.00 9.51 9.42 9.33 9.26 9.20 

$135.00 9.51 9.41 9.32 9.25 9.18 

$140.00 9.50 9.41 9.31 9.23 9.17 

$145.00 9.50 9.40 9.30 9.22 9.16 

$150.00 9.50 9.39 9.29 9.21 9.14 
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