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ABSTRACT 

 

Tara Christine Nath 

 

Firm Size’s Impact on Organizational Learning: A Case Study of Waste and Production 

Efficiency in Pennsylvania’s Oil and Gas Industry 

 

(Under the direction of Dr. Kristin Wilson) 

 

 An understanding of organizational learning provides insights into how 

companies evolve and remain competitive in an ever-changing environment. Companies 

in the Oil Field Services & Equipment (OFSE) sector have to operate under constantly 

squeezing profit margins while handling environmental concerns from local communities 

where they operate. Companies who are able to learn effectively will likely have greater 

financial success in the competitive landscape and bring about less of an environmental 

impact, thus satisfying many key stakeholders. My research explores two hypotheses in 

the context of Pennsylvania’s oil and gas industry, the second largest natural gas producer 

in the United States. First, are large operators are less agile and slower learners due to 

size factors like bureaucracy in decision making? Or, second, are small operators less 

agile and slower learners because of a lack of economies of scale? This study was 

conducted using both multivariate analyses and data charting of raw waste and 

production data from 1990 to 2018.  
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LITERATURE REVIEW 

What is Organizational Learning 

Understanding organizational learning has provided insights into how companies 

evolve and remain competitive in an ever-changing environment. Learning, specifically 

the learning curve, was first discovered and understood by psychologists regarding the 

behavior of individuals (Argote, 2013, p. 3). Learning is exhibited when time taken to 

complete a task decreases, the number of errors made when doing said task decreases, or 

the cost per unit decreases over time; the graphical representation of these metrics are 

displayed in what is called a learning curve (Argote, 2013). Researchers have since 

identified learning patterns across a wide range of industries at the individual, firm, and 

industry levels. Some methodologies and learning trends have also been identified. As 

early as 1936, Theodore Wright analyzed the factors affecting the cost of airplanes in his 

famous study of organizational learning. This study was one of the first of its kind to 

provide evidence that the cost of production declined as cumulative output increased 

(Wright, 1936). Additionally, a 1964 study by Winfred Hirschmann found that the 

petroleum refining industry followed a learning curve (1964). This was an important 

discovery because it showed that labor does not have to be the sole driver of learning and 

that it can instead come from modifications in the organization or technology. These 

findings are only some amongst a plethora of research into organizational learning and 

learning curve patterns; researchers are continuously attempting to discover learning 

trends and 
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 Understanding the determinants of organizational learning and learning curves is 

valuable for internal decision makers, policymakers, and investors associated with almost 

any industry. Argot points out that internal decision makers can use learning curves and 

planning and forecasting tools to make strategic decisions in relation to other firms (2013, 

p. 23). She adds that internal uses include creating production schedules, budgeting, 

making delivery commitments, and monitoring performance. Externally, uses include 

predicting competitor’s costs, how to price products, and whether or not to enter a new 

market. Understanding learning curves is also valuable for policymakers as the learning 

rate and the ability of firms to transfer knowledge are important considerations for 

antitrust and trade policies. Investors can also find value in learning curves as these 

graphical representations can give insights into market structure and performance 

(Argote, 2013, p, 23).  

 

Organizational Learning in the Oil and Gas Industry 

Companies in the Oil Field Services & Equipment (OFSE) sector have to operate 

under constantly squeezing profit margins while handling environmental concerns from 

local communities where they operate. If any of these companies are able to realize the 

benefits of organizational learning, such as improved efficiency, budgeting, and 

performance monitoring regarding waste outputs, they will likely have greater financial 

success in the competitive landscape and bring about less of an environmental impact, 

thus satisfying many key stakeholders.  
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Financial Pressures of the Oil and Gas Industry 

OFSE companies must be able to withstand fluctuating oil prices and the 

complexities associated with international competition and trade. For example, in 2018, a 

year in which Wall Street predicted oil would surpass $100, the market was plagued with 

ongoing U.S.-China trade disputes, Iranian sanctions, and disagreements within OPEC 

(Organization of Petroleum Exporting Countries). U.S. crude dropped 25% from the 

beginning of the year with Brent crude (the international oil benchmark) down 19.5% 

(DiChristopher, 2018). Concurrently, an increased fuel economy was leading to lower 

gasoline consumption, thus forcing the industry to operate under extremely tight margins 

(Ati, Brinkman, Peacock, & Wood, 2016). Given the constant potential for oil price 

volatility, it is absolutely vital that OFSE companies cut costs whenever and wherever 

possible.  

 

Environmental Pressures of the Oil and Gas Industry and Fracking 

Oil and gas well operators’ cost-cutting measures, particularly in the area of waste 

disposal, have piqued the concern of environmentalists and citizens alike. These concerns 

have resulted in negative publicity, law suits, and increased oversight from regulatory 

bodies. Many existing environmental concerns have been compounded by the recent 

boom of fracking in the United States. Fracking, derived from the term “hydraulic 

fracturing,” is the process of drilling into the land to release and extract the gas inside. 

The Independent Petroleum Association of America (n.d.) elaborates that fracking is “the 

process of injecting liquid and materials at high pressure to create small fractures within 

tight shale formations to stimulate the production and safely extract energy from an 
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underground well…” (para. 1). This unconventional process has transformed the natural 

gas industry in terms of increased production quantity. However, the actual fracking 

process has caused environmental uproar in geographic areas with active wells 

throughout the United States. 

One of the main environmental complaints about fracking is the impact it has on 

local water sources. Depending on the rock formation, well operator, and well 

configuration, among other factors, each fractured well requires between 1.5 and 16 

million gallons of water (American Geosciences Institute, 2014). This water is often 

extracted from the surrounding area, effectively reducing the amount of clean water 

available to local residents. A 2014 article published in the Energy Policy Journal 

conducted a public opinion poll and identified a series of externalities that a majority of 

Americans had associated with fracking, including strains on water and sewage 

infrastructure (Boudet et al., 2014). However, more threatening is the potential for this 

waste water to contaminate local water sources. Historically, between 20% and 40% of 

frack water returned to the ground is toxically contaminated with waste from the fracking 

process. This water, often injected into wastewater injection wells or drained into open 

air impoundment pits (frack ponds), has a tendency to leak into local water supplies 

(Horton, 2018). While operators have the technology to recycle frack water, disposal 

methods currently have lower direct costs.  

 

Growth of the Natural Gas Industry 

The economics of the oil and gas industry currently have a positive outlook. 

Authors Zajicek, Karagiannis, and Wiljoit (2016) claim that technological development 
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in the United States along with the discovery of new oil and gas resources are shifting 

supply dynamics of the energy sector. They claim that this shift can be seen particularly 

in shale production where suppliers are looking to increase liquefied gas exports and 

decrease imports. Their research determined that between December 2007 and June 2015, 

domestic natural gas production increased 186% and domestic oil production increased 

342%; both of these increases have been primarily attributed to the fracking boom. While 

the share of natural gas growth is expected to decrease from 29% to 27%, given the 

extraordinary scale of this energy output measurement, I assume there is still ample 

opportunity for growth of US natural gas production and the industry will continue to 

prosper.  

 

How Organizational Learning Can Help 

Given financial and environmental pressures present in the oil and gas industry, 

compounded with tremendous growth potential, this is a good opportunity to study 

organizational learning. Through previous studies of organizational learning, it is 

apparent that increased efficiency is a common outcome, and one that would greatly 

benefit this industry. IPIECA, the global oil and gas industry association responsible for 

promoting environmental and social performance, explains how all stakeholders have a 

role to play to ensure that energy is produced and used in a clean and efficient manner. 

Specifically, the organization reports that improved efficiency has a “central role to play 

in reconciling the goals of economic development, energy security and environmental 

protection” (IPIECA, 2013, p. 3).  



 

  6 

Across the industry, well operators are aware of the tremendous business 

opportunities and widespread economic benefits associated with fracking and are 

financially incentivized, both internally and by investors, to be efficient, cut costs, and 

maximize the potential benefits. As BP’s former CEO John Browne stated,  

 

Learning is at the heart of a company’s ability to adapt to a rapidly 

changing environment. It is the key to being able both to identify opportunities 

that others might not see and to exploit those opportunities rapidly and fully. This 

means that in order to generate extraordinary value for shareholders, a company 

has to learn better than its competitors and apply that knowledge throughout its 

businesses faster and more widely than they do (Prokesch, 1997). 

 

Browne’s message underlines the essentiality of organizational learning for 

financial success in the oil and gas industry. Mr. Browne elaborated that important and 

effective types of learning include tracking employee expertise, promoting a learning 

culture, collecting and sharing explicit knowledge, and utilizing technological systems to 

share captured knowledge (Prokesch, 1997).   

Unfortunately, as discussed previously, these financial benefits are currently 

accompanied by wasteful processes and potentially negative impacts on local 

communities. Across Pennsylvania, well operators face external pressures from 

communities to manage waste and frack responsibly. A recent 2018 public opinion study 

discovered that residents have a growing concern about the industry. In August 2011, 

only 35% of survey respondents believed that the environmental risks of fracking 

outweighed its potential economic benefits. As of March 2018, 55% reported that the 

potential environmental risks outweighed the potential economic benefits of the fracking 

industry in Pennsylvania (Frazier, 2018). This growing concern must be given attention 
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as communities historically have been shown to push back against the industry by 

implementing fracking bans, well limits, traffic and road use restrictions, and high impact 

fees (Squillace, 2016, p. 554). Each of these pushbacks from local communities would 

negatively impact a well’s operation and consequently the company’s bottom line, thus 

demonstrating the financial incentive to be efficient and environmentally responsible. By 

harnessing the knowledge gained from organizational learning through investment in 

methods such as energy efficient technology, benchmarking indices for well 

performance, and eliminating unnecessary waste, it is possible to develop greater 

community relationships and decrease the risk of negative community pushback 

(IPIECA, 2013).  

 

Conclusion 

It has been found that learning does not automatically improve with experience 

alone, but instead is a function of a wide variety of factors that work together to impact a 

firm’s organizational learning rates. Researchers speculate that some of these variables 

include individual learning, organizational structure improvements, and more effective 

new employees, leadership, and equipment. As Argote states in her book, “for 

organizations to compete effectively, we need to understand why some organizations 

show rapid rates of learning and others fail to learn. A greater understanding of factors 

responsible for the variation observed in organizational learning rates is needed” (2013, 

p. 2).  
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One factor that is under-researched in the organizational learning space is the 

relationship between firm size and learning. It is widely understood that differences 

between small and large firms can be seen in organizational structure and management, 

growth and productivity, and innovation (Schiersch, 2013). Firm size can also be 

understood as a proxy for operational scope; as a firm’s size increases, their scope also 

increases since they have more resources to conduct more business in a more efficient 

manner. Schiersch explained that previous empirical research on size-efficiency 

relationships yielded ambiguous results with both positive and negative relationships. 

Further, a majority of size-efficiency studies are set in developing countries, with a 

minority analyzing successful industries in developed countries (2013). At this point, no 

known study analyzes size-efficiency or size-learning relationships in the oil and gas 

industry.   

Given the lack of previous research and knowledge on the impact of increased 

operational scope on learning in the oil and gas industry, especially in terms of 

environmental responsibility, research is needed to understand whether operational scope 

is a driver of organizational learning. This study will analyze whether the size of the 

operator, measured by the firm’s average number of wells in operation over the firm’s 

total operating period, is a driver of organizational learning (quantified by a waste 

efficiency ratio) in the oil and gas industry.  

Understanding this differentiation would be valuable for multiple stakeholders. 

First, understanding their company’s learning curve will help internal decision makers’ 

when formulating long-term plans and potentially provide insight into the types of plans 

they should make moving forward. Additionally, it could provide an important metric for 
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investors to understand which companies have lean, efficient processes. Moreover, this 

information would be valuable for policymakers in the energy sector. An understanding 

of organizational learning abilities of operators of different sizes would shed light onto 

different firm’s abilities to meet target objectives as well as the potential differential 

impacts of regulations.  

One hypothesis tested in this study is that larger operators are less agile and 

slower learners because it is more challenging for larger companies to have “timely 

responses that span organizational, product and geographic boundaries (Harraf, 

Wanasika, Tate, & Talbott, 2015, p. 676). Similarly, as size increases, the costs of errors 

increases resulting in more risk-averse decision making. As Harraf et al. explain, these 

growth factors make agility more challenging and therefore less likely to be incorporated 

into organizational processes (2015, p. 676).  

On the other hand, another hypothesis to be tested is that smaller operators are 

less agile and slower learners because they do not have benefits of economies of scale 

(“The keys to organizational agility,” 2015). Similarly, it is possible that they have lesser 

capacity for knowledge sharing, given that they have fewer active wells from which to 

learn. 

 Given the lack of existing research on the size-learning relationship and 

competing theories behind this relationship, specifically in the oil and gas industry, 

research is needed to identify what relationship, if any, exists between operational scope 

and organizational learning in this context.  
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METHODOLOGY 

 

Selection of the Fracking Industry 

In the 1980s, George Mitchell pioneered fracking for the extraction of shale gas 

(Gertner, 2013). Since then, the industry has boomed and continues to have positive 

growth prospects. Given the highly politicized rhetoric around the environment, fracking 

has also proven to be a frequently debated industry as of late. According to ABI inform, 

limited to the search of frack as a root (thus encompassing fracking, fracker, frackers, 

etc.), the Wall Street Journal alone published 295 articles in the past two years 

(December 6, 2016 to December 6, 2018) that mention fracking. Considering the 

relatively new nature of the industry paired with the excitement of contemporary debates, 

it is both an interesting time to research this industry and valuable to provide insights into 

how it can function more efficiently.  

 

Fracking in Pennsylvania  

Pennsylvania was selected as the location for this study due to geographic policy 

differences and the scope of the industry across the state. Fracking regulations differ by 

geographic area; some states have full fracking bans, some localities have bans or 

moratoria, and other areas are currently debating the issue (Hirji & Song, 2015). I opted 

to study a single state to control for some of these dramatic policy differences.  
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Pennsylvania is consistently identified as one of the top natural gas producers in 

the country and, as a Pennsylvania native, these conversations and debates are 

particularly interesting and hit close to home. Fracking in Pennsylvania is made possible 

because of the Marcellus Shale Formation. The Marcellus Shale is a stretch of 

sedimentary rock reaching from Upstate New York down through Pennsylvania, West 

Virginia, and Ohio. Buried thousands of feet below the surface, this formation created a 

large volume of natural gas over millions of years. Now, this shale formation gives life to 

the Pennsylvania fracking industry. As of August 2018, Pennsylvania is home to almost 

9,000 active wells (“The Marcellus Shale, Explained,” n.d.). The Pennsylvania 

Department of Community and Economic Development also listed natural gas as one of 

the top industries in the state (n.d). In 2016 alone, gross natural gas production in 

Pennsylvania exceeded 5 trillion cubic feet and consequently, as the nation’s second 

largest natural gas producer, has been ranked among the top three energy exporters in the 

country. Further, the Global Energy Institute, an arm of the U.S. Chamber of Commerce, 

issued a report on the economic impact of fracking regulation across the country. 

Pennsylvania was highlighted as one of the states whose economy relies the most on the 

fracking industry; the study reported that a ban on fracking in Pennsylvania could lose the 

state $50 billion a year in state GDP (2016). Due to the scope of the industry and its 

integral nature on Pennsylvania’s economy, it is sufficiently representative of other 

fracking geographies across the United States.  
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Frack Wastewater 

Large amounts of fracking wastewater provide a financial burden to well 

operators and serve as the basis for many environmental concerns. In fact, one of the 

largest frack waste components is water, with each well requiring approximately 350,000 

barrels or more of water input (one barrel is equal to 42 gallons). For a typical Marcellus 

well in Washington County, Pennsylvania (one of the largest producing counties in the 

state), per well water costs are estimated to be $1.4 million (Haines, 2018). Well 

operators are financially motivated to increase production efficiency and decrease the 

total amount of water used on each well.  

Additionally, in 2011, the U.S. Environmental Protection Agency formally 

banned the disposal of frack waste water at public sewage plants. This regulation was 

preceded by former Pennsylvania Governor Tom Corbett’s directive to oil and gas 

companies to end the practice. While disposal at public treatment facilities was never the 

most popular method of disposal, it has indefinitely ruled out the option for operators and 

forces them to come up with independent disposal processes (Hurdle, 2016). Some of 

these other processes include “spreading” (releasing waste water on unpaved roads to 

control dust), impoundment pits, and injection wells. Each of these methods involves the 

risk of toxic water contaminating local water sources. This contamination, or even the 

idea of contamination, has resulted in many lawsuits being filed against well operators. 

According to the Westlaw database limited to Pennsylvania courts and related federal 

cases, Range Resources (one of the most prominent Pennsylvania oil and gas companies) 

alone has been implicated in approximately 80 cases in the past 10 years (2008 to 2018). 

These cases are costly, time consuming, and reflect poorly on the firm’s public opinion. 
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Range Resources is one of thousands of operators in the state, meaning that industry-wide 

across Pennsylvania, lawsuits hinder financial performance.  

 

Well Selection 

Both conventional and unconventional wells from 1990 to 2018 were selected for 

this study. This time frame was selected because the process of fracking Shale gas was 

first pioneered in the late 1980s by George Mitchell (Gertner, 2013). Given that the 

Marcellus Shale Formation underlies approximately 60% of Pennsylvania’s total 

landmass (see Figure 1) and is the principal source of oil and gas in the state, it follows 

that 1990 is when fracking could first be considered viable in Pennsylvania.  

 

Figure 1. Map of shale formations in the northeast. From “Marcellus and Utica Shale 

Formation Map,” by Marcellus Shale Coalition, http://marcelluscoalition.org/pa-map/. 

Conventional and unconventional wells are the two methods of oil extraction 

utilized in Pennsylvania. Conventional wells are vertical configurations used when oil is 
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already flowing beneath the ground. Unconventional wells are typically horizontal wells 

used to extract oil from rock with low permeability (e.g. coal, shale, sandstone). 

Unconventional wells are typically recognized as extracting oil through the fracking 

process. However, conventional and unconventional wells can be at work 

contemporaneously to maximize oil extraction from a single geographic location. In 

addition, a single well could switch from extracting oil by conventional methods to later, 

once most free flowing oil has been extracted, extracting oil through unconventional 

methods. Considering many well operators own both conventional and unconventional 

wells, operate them within the same geographic regions, and utilize much of the same 

labor and technology for operation, it follows that they should both be included in this 

efficiency study.  

 

Data Selection 

Data was collected from the Pennsylvania Department of Environmental 

Protection’s Oil & Gas Production Reports and Waste Reports (“PA DEP Oil & Gas 

Reporting Website - Production / Waste Reports,” n.d.). The Production Reports included 

data related to oil, gas, and concentrate output per well. The Waste Reports reported 

types and quantities of wastes per well. All data collected from both reports is self-

reported by well operators pursuant to directives included in the Oil and Gas Act of 1984. 

The Act requires that “…every well operator shall file with the department, on a form 

provided by the department, an annual report specifying the amount of production on the 

most well-specific basis available. Annual reports shall also specify the status of each 

well…” (Oil and Gas Act of 1984). This act was updated and replaced by the Oil and Gas 
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Act of 2012 which required that operators instead report data on a monthly basis. 

However, since data prior to 2012 could not be identified on monthly levels, annual data 

was used throughout this study.  

 

Data Explanation 

 After cleaning and merging Production and Waste Reports, the final data set 

consisted of sixteen variables, eleven of which were descriptive. These data provided 

insights into well operators, well operating years, and well types (conventional or 

unconventional) along with production and waste quantities. See Appendix A for a list of 

variables included in the final data set. The raw data was reported by well for each year it 

was in operation and will be henceforth referred to as “well/year measurements.”  

 

Data Operationalization  

In order to determine if operator size is a driver of organizational learning in the 

oil and gas industry, I tracked operator’s waste output per unit of production over 

cumulative production output. Prior research identified an increase in efficiency over 

increased cumulative output to be an indicator of organizational learning. In the context 

of this analysis, an increase in efficiency is explained as a reduction in the amount of 

waste being generated per unit of production output. In order to ultimately track these 

measurements, I operationalized key measures including operator size, total waste and 

production outputs, and waste ratios. All data operationalization and analysis was 

conducted using STATA.  
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Learning Model 

 Learning was measured as a function of waste output per unit of production 

output and is subsequently referred to as “waste ratio.” The waste ratio was generated 

using the following formula:  

  

 𝑊𝑎𝑠𝑡𝑒 𝑅𝑎𝑡𝑖𝑜 =  (𝑇𝑜𝑡𝑎𝑙 𝑊𝑎𝑠𝑡𝑒 ÷ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛) 

  

 This ratio for a certain group (industry, quartile, individual operators) was tracked 

and plotted on graphs. These graphs used cumulative output as the independent variable 

and the waste ratio as the dependent variable. I first gathered summary statistics and ran 

simple regressions on those data. An indication of the potential for organizational 

learning would be if the waste ratio had a negative correlation with cumulative quantity at 

a significant level (𝛼 = 0.05). I then graphed linear and quadratic functions on the data to 

visualize the learning curve for the group and to compare it with other groups. 

Organizational learning was exhibited in learning curves that had a significant, negative 

geometric relationship. This model was replicated at the industry level (by quartiles 

identified by firm size), and by individual operators. Measuring the waste ratio over 

cumulative output to ultimately generate graphical representations of industry level 

efficiency trends required the construction of several key variables. 

 

Dependent Variable: Waste Ratio 

 Production and waste variables were converted to their most basic form for 

analysis. Conventional and unconventional wells produce three types of outputs: oil, gas, 
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and concentrate. For the purpose of this research, there is little value in viewing them as 

individual outputs, so I combined them into one “total production” value for each 

well/year measurement. Similarly, many different types of fracking wastes were reported 

in the waste reports, so I combined them into a single “total waste” well/year 

measurement. Using these two total measurements, I created the waste ratio.  By creating 

this waste ratio, rather than looking at total waste output, I controlled for increased waste 

levels due to increased production levels, and vice versa.  

 

Preliminary Analysis: Time 

 Given the nature of learning curves, the first independent variable in this analysis 

is time. In this case, time serves as a proxy for experience as a well operator. Per the 

directive of the Oil and Gas Act of 1984, annual data from wells was collected and 

starting in 2012, monthly data was collected. However, all monthly data was transformed 

to yearly quantities to maintain consistency throughout the analysis.  

 The graphs created by this preliminary analysis represent an eyeball test of the 

diffusion of practices across industry. While this analysis is confounded by external 

influences such as international conflict or gas prices, it is still important to understand 

what is happening over time.  

 

Primary Analysis: Cumulative Quantity  

 In the primary set of regressions, cumulative production quantity was used as the 

independent variable as a measurement of operational scope. This measure was 

constructed in order to compare well operators waste ratios at a certain period in their 
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production timeline, rather than at a certain year. By running the analysis in this manner, 

it controlled for the fact that not all firms begin and end operation during the same years, 

i.e. an operator who began operation in 2002 and an operator who began in 2009 will 

have their waste ratios compared at a certain production level (Q) rather than in a certain 

year when the older operator had more experience than the newer one. 

 

Measuring Learning 

Previous research shows that learning occurs at the industry, organizational, and 

individual levels. Individual level learning is not particularly applicable to the research 

question posed, so it is not included in the analysis. However, it is necessary to control 

for industry level learning and knowledge sharing, other technological improvements, or 

external shocks, before concluding that any learning being observed is solely at the 

organization level based on operator size. While many learning curve analyses today 

consist of multivariate regressions, early concepts of learning curves began as simple 

graphical representations of cumulative output on unit costs or efficiency ratios. This first 

part of this analysis follows a similar model of looking for patterns in raw data based on 

graphical evidence visualized through learning curves. The second part of this analysis 

uses a multivariate analysis to determine the impact of firm size and operational scope on 

the waste ratio.  
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Industry Level Learning by Quartile 

To determine the upper and lower quartiles of operators (by size), I generated a 

measurement (well per year) averaging the number of wells an operator had in operation 

over the time they were active across the state using the formula below:  

 

𝑤𝑒𝑙𝑙 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 =  𝑤𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 ÷  𝑦𝑒𝑎𝑟 𝑐𝑜𝑢𝑛𝑡𝑒𝑟  

given: 

𝑤𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 =   𝐻𝑜𝑤 𝑚𝑎𝑛𝑦 𝑤𝑒𝑙𝑙𝑠 𝑒𝑎𝑐ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒𝑖𝑟 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑃𝐴  

𝑦𝑒𝑎𝑟 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =  𝐻𝑜𝑤 𝑚𝑎𝑛𝑦 𝑦𝑒𝑎𝑟𝑠 𝑒𝑎𝑐ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑤𝑎𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑖𝑛 𝑃𝐴 

 

By determining upper and lower quartiles based on this well-per-year 

measurement, rather than the total number of wells an operator had in total, I was able to 

limit survivorship bias in the quartile selection process. Additionally, the middle 50 

percent of measurements were separated and used as the control and as the metric of 

comparison between the upper and lower quartiles. The middle 50% is subsequently 

referred to as the “interquartile range” or “IQR.”  

In order to control for knowledge sharing and organizational learning at the 

industry level, I totaled the waste ratio values of every well held by every operator each 

year, effectively ignoring individual wells and operators, and looking at the yearly waste 

ratios across the industry (separated by the previously explained quartiles). By analyzing 

data at the industry level, rather than operator or individual well level, it is possible to see 

trends in the industry’s waste ratio. In order to control for intertemporal variation, a 

second version of this graphical analysis was conducted using a 95% confidence interval 
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difference in means graph. The following two new ratios were generated and graphed for 

each year between 1990 and 2018:  

 

𝑁𝑒𝑤 𝐵𝑜𝑡𝑡𝑜𝑚 𝑅𝑎𝑡𝑖𝑜 =  𝐴𝑛𝑛𝑢𝑎𝑙 𝐵𝑜𝑡𝑡𝑜𝑚 𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑠𝑡𝑒 𝑅𝑎𝑡𝑖𝑜 −  𝐴𝑛𝑛𝑢𝑎𝑙 𝐼𝑄𝑅 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑠𝑡𝑒 𝑅𝑎𝑡𝑖𝑜 

𝑁𝑒𝑤 𝑈𝑝𝑝𝑒𝑟 𝑅𝑎𝑡𝑖𝑜 =  𝐴𝑛𝑛𝑢𝑎𝑙 𝑈𝑝𝑝𝑒𝑟 𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑠𝑡𝑒 𝑅𝑎𝑡𝑖𝑜 −  𝐴𝑛𝑛𝑢𝑎𝑙 𝐼𝑄𝑅 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑠𝑡𝑒 𝑅𝑎𝑡𝑖𝑜 

 

If either the original or new waste ratio was seen decreasing as cumulative output 

was increasing in either facet of the study, it was interpreted to mean that that knowledge 

sharing and learning were occurring within the specified quartiles across the industry.  

 

 

Organizational Level Learning by QuartileOperational Scope 

 In order to determine if operational scope is a driver of organizational learning in 

the oil and gas industry, I totaled the waste ratio values of every well for each year an 

operator was in service, effectively ignoring individual wells and looking at the yearly 

waste ratios at an operator level. By analyzing data at the operator level rather than the 

industry or individual well level, it was possible to track the variation in the firm’s waste 

ratio over time. To conduct this analysis, the cumulative production quantity was used as 

the independent variable and waste ratio as the dependent. If learning was occurring, the 

waste ratio would be seen decreasing as cumulative quantity was increasing. By 

conducting a regression of the logged values of firm size (as previously determined by 

upper and lower quartile of wells per year), cumulative quantity, and an interaction term 

of the two on the logged waste ratio, it was possible to determine the average learning 
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trend, the effect of being either large or small on efficiency, and the difference in learning 

between small and large operators.  
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RESEARCH FINDINGS 

 

 Throughout this section, my analysis focuses on the incidence of organizational 

learning in the Pennsylvania oil and gas industry. Operationalized by running regressions 

on and graphing the waste ratio for 1,199 well operators between 1990 and 2018, this 

study determined that decreases in the waste ratio over time were not significantly 

determined by operational scope. My study first looked at trends within Pennsylvania’s 

oil and gas industry over time. I then controlled for learning at the industry level and 

determined that there is no evidence of organizational learning across small operators or 

large operators, compared to learning of the IQR. Further multivariate analysis 

controlling for the fixed effects of individual firms was conducted to determine if 

organizational learning was occurring within operators. It was found that on average all 

firms, regardless of operational scope, decreased their waste ratio as their cumulative 

output increased. I later went into detail regarding how these findings aligned with prior 

research and my original hypotheses.       

 

Industry Level Trends Over Time  

I began by comparing both the upper and lower quartile average annual waste 

ratios to the IQR’s waste ratio to determine if they were statistically different. After 

closer analysis of the annual difference in waste ratio means between the bottom quartile 

and IQR, I in fact rejected with 95% confidence that the average means of the bottom 
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quartile and IQR were the same. This piece of the analysis provided basis for proving a 

difference between the bottom quartile’s and IQR’s efficiency trends over time. The 

graphical representation of this relationship is seen in Figure 2.  

 

Figure 2. Industry level bottom quartile difference in means. 

  

 See Appendix E for summary statistics and the graphical comparison between the 

difference in mean waste ratios at the industry level. 

Through an analysis of the difference in annual means between the upper quartile 

and IQR, industry wide shocks were taken into consideration. Ultimately the regression 

explains 32% of the variation in waste ratio between 1990 and 2018. A graphical 

representation of this relationship can be seen in Figure 3.  
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Figure 3. Industry level upper quartile difference in means 

 

This analysis reveals evidence declining difference in waste ratios between the 

upper quartile of Pennsylvania’s oil and gas industry and the IQR. Upon further 

evaluation, Appendix F shows that the upper quartile’s waste ratio was consistently much 

higher than that of the interquartile range until 2010, when it dropped below and followed 

closer to the ratios of the IQR. The primary driver of this change was a large growth in 

production output starting in 2010, during which time waste output remained consistent 

with the IQR level. Lastly, the growth of the industry in terms of number of wells in the 

state was positive from 1990 to 2018. This trend can be seen below in Figure 4.  



 

  25 

 

 

 In conclusion, the effects of time on waste ratio are inconclusive, likely due to 

confounding effects such as technological advancement, pricing and market conditions, 

and regulatory shocks. Therefore, the next stage of the analysis will look into the effects 

of organizational learning in Pennsylvania’s oil and gas industry by analyzing the effect 

of increasing cumulative output on firms’ waste ratios.  

Industry Level Learning by Quartile 

 This analysis sought to understand industry level efficiency trends over time 

across the oil and gas industry before exploring whether organizational learning was 

Figure 4. Number of wells per year in Pennsylvania from 1990 to 2018. 
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occurring at the industry level. Tables detailing the summary statistics of data utilized in 

this analysis can be found in Appendices C and D (Appendix C details all data and 

Appendix D details data without outliers in the 99th percentile). Through simple 

regressions and data charting by quartile, I examined the effect of firm size on 

organizational learning at the industry level.  

 

Bottom Quartile  

For the bottom quartile, there is a .0347818 weak positive linear correlation 

between the waste ratio and cumulative quantity. With a p-value of 0.000, this 

relationship can be viewed as significant. Likewise, it is unlikely that learning was 

exhibited at the industry level, but further analysis was necessary to substantiate this 

assumption. Upon initial observation of the raw data trends, it was determined that the 

bottom quartile’s waste ratio was generally higher than that of the IQR as cumulative 

quantity increased. In conjunction, these observations demonstrated that smaller firms 

were generally less efficient than average firms. This trend can be seen in Figure 5. 

 

 

 

 

 

 

 

 

Figure 5. Lower quartile waste ratio by cumulative quantity 



 

  27 

Upper Quartile  

For the upper quartile, there is a .0005858 positive linear correlation between the 

waste ratio and cumulative quantity. However, this relationship is not significant. Based 

on the insignificance of this relationship, it is unknown whether learning is occurring on 

the industry level within the upper quartile, so further analysis is required. A graphical 

representation of the waste ratio by cumulative quantity, as seen in Figure 6.  

 

The conclusion made by analyzing these graphs revealed that there was no 

significant, consistent learning mechanism at place at the industry level. This result was a 

necessary conclusion to isolate organizational level learning for the next step of the 

Figure 6. Upper quartile waste ratio by cumulative quantity. 
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analysis. The drivers of internal differences seen in the graphs will be further investigated 

in the next analysis when controlling for fixed effects of individual firms.  

Organizational Level Learning by QuartileFirm Size 

 The second part of this analysis sought to identify organizational learning by 

small and large individual operators within the oil and gas industry. Through multivariate 

regressions and data charting, I examined the effect of operational scope and firm size on 

learning at the organization level.  

 

The Impact of Increased Operational Scope 
 

 By running a regression on the logged relationship between waste ratio and the 

operational scope, it was found that on average, as cumulative output was increasing, 

waste ratio was decreasing, thus providing evidence for learning across all firms of all 

sizes. In fact, a 1% increase in the cumulative output was associated with a significant 

decrease in the corresponding waste ratio by 0.43%. See Figure 7 for a graphical 

representation of this trend.  
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 The primary goal of this analysis was to determine if a large firm’s waste ratios 

were decreasing at a different rate over time than those of not-large firms. Similarly, a 

second analysis was run to determine if a small firm’s waste ratios was decreasing at a 

different rate over time than those of not-small firms. If the waste ratio was seen 

decreasing as the operator’s cumulative output was increasing, it was interpreted that 

knowledge sharing and learning were occurring within the firm.  

 For large firms, an analysis of the regression of logged cumulative quantity and an 

interaction variable (the combination of size and cumulative quantity) on logged waste 

ratio showed no significant change in the coefficient for the logged cumulative quantity 

from the basic regression of the logged cumulative quantity on logged waste ratio. 

Further, the interaction term’s coefficient of 0.0385 had a p-value greater than 0.05 and 

therefore could not be considered significant. Similarly, the same regression for small 

firms again showed no significant change in the coefficient for the logged cumulative 

Figure 7. Relationship between cumulative output and waste ratio. 
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quantity and had an insignificant p-value for the interaction coefficient. Please see Figure 

5 below for a breakdown of these numbers.  

 

Impact of Being a Large or Small Operator 

Regression 1: Cumulative quantity (logged) on waste ratio (logged) 
Regression 2: Cumulative quantity (logged) and interaction (logged cumulative quantity 
and firm size) on waste ratio (logged) 
*all regressions were run with the xtreg command in Stata. All regressions also 
controlled for fixed effects and robustness.  

Regression 1:  

Logged cumulative quantity coefficient -0.4305 

Logged cumulative quantity p-value 0.000 

Large Operators Regression 2:  

Logged cumulative quantity coefficient -0.4344 

Logged cumulative quantity p-value 0.000 

Logged interaction coefficient 0.0385 

Logged interaction p-value 0.594 

Small Operators Regression 2:  

Logged cumulative quantity coefficient -0.3968 

Logged cumulative quantity p-value 0.000 

Logged interaction coefficient -0.0599 

Logged interaction p-value 0.282 

Figure 8. Quantitative impact of being a small or large firm. 

 In conclusion, this analysis found that neither being a large or small firm impacts 

learning more than the other. There was no significant difference between firms of any 

size and their ability to be more efficient and learn over time. Therefore, this analysis 

shows that firm size is not a driver of organizational learning in Pennsylvania’s oil and 

gas industry.  
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Stakeholder Takeaways 

 The findings of this research can provide value for key stakeholders including 

investors, policy makers, and internal decision makers.  

 

Investors 

From the investor perspective, a firm’s ability to practice organizational learning 

within the oil and gas industry could be used as a metric of interest for investment 

decisions. Given that the industry trend is a decrease in waste ratio associated with an 

increase in cumulative output, if a firm is not meeting industry standards it is likely not a 

worthwhile investment. Similarly, investors should recognize that firm size was not an 

indicator of increased efficiency over an increase in cumulative output. Likewise, firm 

size alone should not be a key decision point for investors. Future research of interest to 

investors would include relationships between learning rates (or lack thereof) discovered 

in this research and firm profitability measurements.  

 

Policy Makers 

While there is evidence across firms of all sizes within Pennsylvania’s oil and gas 

industry of declining waste ratios with increases in cumulative quantity, it would be 

valuable to understand what enables some firms to be more efficient than others. With 

future research, policy makers could understand which firms need extra incentives to be 

efficient and create policy as such. Further, even though firms in general are becoming 

more efficient, it would be beneficial to communities if firms generated less waste. In 

2018, Ross Craft, chairman and CEO of Approach Resources Inc, explained that 
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environmentally friendly, efficient technologies exists that are capable of cleaning water 

to a point where it can be put into local water sources, used for farming, or even 

consumption (Haines, 2018). Unfortunately, he admits that the technology is expensive, 

an obvious deterrent for oil and gas operators already operating in tight margins. 

Accordingly, well developed policies and regulation enforcement could incentivize oil 

and gas companies to take the next step to invest in technology that help protect the 

environment.  

 

Internal Decision Makers 

 Considering the overwhelming direct and indirect costs of waste and waste 

handling, it is vital for firm’s financial interests to efficiently manage and reduce their 

respective waste ratios. Likewise, it is important that individual firms research and 

understand their respective abilities to decrease their waste ratio as their cumulative 

output increases. By capitalizing on internal strengths and learning opportunities, firms 

would reap significant cost savings. As John Browne, former CEO of BP, explained, 

knowledge “is relatively inexpensive to replicate if you can capture it”(Prokesch, 1997). 

He expands to discuss that working activities in the oil and gas industry are not one-time 

events and, that if each repetition can be more efficient than the last, a lot more money 

can be made (1997).  
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DISCUSSION 

 

 A number of limitations from this study are noteworthy and the resulting 

opportunities for future research warrant additional discussion.  

Limitations  

 While a majority of data limitations were consciously avoided through this 

study’s methodology, others were ineludible. First, data utilized in this study was self-

reported by well operators. Due to the nature of this collection process, data is not likely 

to be completely accurate, either by accident or because of adverse reporting incentives 

and a lack of institutional oversight. While notice was taken to clean the data and avoid 

glaring misrepresentations of truth, it is possible that some data utilized in this study was 

not true to reality. Further, inconsistent reporting guidelines, while anticipated due to the 

nature of the newly developing and rapidly growing industry, forced the simplification of 

analysis. For example, when the Oil and Gas Act of 2012 was implemented, waste and 

production metrics were subsequently reported monthly rather than annually, and there 

were more specific descriptions of waste types and waste disposal methods. All of these 

increasingly specific data measures would have made for a richer study and analysis.    
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Future Research Opportunities 

Future research on organizational learning’s impact on energy efficiency, 

specifically within the setting of Pennsylvania’s oil and gas industry, would shed light on 

some of the questions left behind from this study. One of the largest questions I had at the 

completion of my research was: “How have energy operators managed, both financially 

and legally, to not decrease their waste ratios over time?” I believe an avenue of future 

research that could shed light on this question would be to measure and track the rate of 

waste being recycled. A possible hypothesis is that while overall waste ratios might not 

be decreasing, the amount of waste being recycled is increasing, effectively decreasing 

the environmental impact of waste being created and disposed of.  

An additional element that could be valuable to incorporate in future research 

would be to control for well geography. While it was beyond the scope of this project, I 

hypothesize that regardless of the identity of the well operator, certain geographies have 

varying access to resources and disposal methods based on proximity to bodies of water, 

the necessity to navigate mountainous terrain, and even varying levels of precipitation. 

Additionally, the existence of local regulations or restrictions could impact a well 

operator’s ability to operate at optimal efficiency levels.  

Similarly, it would be interesting to conduct this same or similar research in other 

states or on a national scale. Perhaps companies with operations in multiple states have 

efficiency bottlenecks in certain states but are able to make headway in others. By only 

analyzing a single state, it is difficult to truly put operator performance in perspective. 

While I concluded that waste ratio had not significantly decreased over time in 

Pennsylvania, maybe Pennsylvania operators have efficiency figured out and have no 
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room for improvement. Likewise, having a comparison to other states or a national basis 

would provide valuable insights and basis of comparison for this research question and 

subsequent findings.  

Lastly, supplementary research into well-level, individual learning rates would 

provide valuable insights for internal decision makers. By analyzing individual wells’ 

waste ratios, underperforming wells could be identified and remedying steps could be 

taken to improve the well as needed. This research would also provide insight into 

whether or not firm leadership needs to invest in and facilitate more knowledge sharing 

within the company. By understanding which wells are performing exceptionally, 

explanatory metrics (technological innovation, organizational structure, leadership, etc.) 

can be identified and shared across the company.  

  

   

 

 

 

 

 

 

 

 

 

  



 

  36 

 

 

 

 

 

APPENDIX 

 

Appendix A 

Final Data Set Variables 

 

FINAL DATA 

Production Variables Waste Variables 

Operator 

Operator Number 

Period ID 

Reporting Period 

Unconventional 

Well County 

Well Latitude 

Well Longitude 

Well Permit Number 

Well Status 

Well Type 
Condensate Quantity 

Gas Quantity 

Oil Quantity 

Operator 

Operator Number 

Period ID 

Reporting Period 

Unconventional 

Well County 

Well Latitude 

Well Longitude 

Well Permit Number 

Well Status 

Well Type 

Units 

Waste Quantity 

*Bolded terms indicate variables present in both lists prior to merging data 
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Appendix B 

Bottom and Top Quartile Operator Selection Methodology 

 

OPERATOR SELECTION METHODOLOGY 

Bottom Quartile Top Quartile 

1. Sort firms by average number of wells 

per year  

2. Determine firms in 25th percentile of 

average number of wells per year and 

label them as BOTTOM  

3. Determine 75th percentile of wells per 

year of BOTTOM operators (operators 

with 16+ wells per year) 

4. Determine 75th percentile of years in 

operation of BOTTOM operators 

(operators in service for over 17+ years) 

5. Identify BOTTOM operators with 16+ 

wells per year and 17+ years of service) 

a. 7 operators were identified 

6. Identify BOTTOM operators with 15+ 

wells per year and 17+ years of service) 

a. 0 additional operators were 

identified 

7. Identify BOTTOM operators with 14+ 

wells per year and 17+ years of service) 

a. 3 additional operators were 

identified 

8. Select remaining 10 operators for further 

analysis 

1. Sort firms by total number of years in 

operation  

2. Determine firms in 75th percentile of 

average number of wells per year and 

label them as TOP  

3. Determine 75th percentile of wells per 

year of TOP operators (operators with 

270+ wells per year) 

4. Determine 75th percentile of years in 

operation of TOP operators (operators in 

service for over 18+ years) 

5. Identify TOP operators with 270+ wells 

per year and 18+ years of service) 

a. 1 operator was identified 

6. Identify TOP operators with 18+ years of 

service) 

a. 4 additional operators were 

identified 

7. Identify TOP operators with 14+ years of 

service) 

a. 5 additional operators were 

identified 

8. Select remaining 10 operators for further 

analysis 

Notes:  

● Selection of firms operating in the upper percentiles of operating years in their 

respective quartiles was necessitated by the overarching research methodology. 

Without sufficient years to track the waste ratio, conclusions could not be determined. 

● While there could be inherent differences in firms selected because of falling in the 

upper percentile of operating years, prior research has determined that there is no direct 

correlation between experience and learning rates (Argote, 2013).  

● This methodology controls for years in operation and allows the key differentiating 

factor to be operator size (as measured by average number of wells held over time) 
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Appendix C 

Summary Statistics for Industry Level Learning - With Outliers 

 

Industry Level Summary Statistics - With Outliers 

Well per Year: Mean 95.78 

25th Percentile 22.62 

50th Percentile 41.60 

75th Percentile 99.53 

Standard Deviation 124.60 

Waste Quantity: Mean 165.81 

50th Percentile 23.62 

Standard Deviation 14966.99 

Production Quantity: Mean 348.27 

50th Percentile 252.90 

Standard Deviation 322.4296 

Waste Ratio Mean 1.53 

50th Percentile 0.09 

Standard Deviation 93.54091 

Notes:  

● Statistics based on 207,520 well/year measurements 

○ Originally had 448,302 well/year measurements 

■ Observations were dropped if the waste ratio was missing or equal to 0 

■ Observations were dropped if total production was less than 1 
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Appendix D 

Summary Statistics for Industry Level Learning - Without Outliers 

 

Industry Level Summary Statistics - Without Outliers 

Well per Year: Mean 92.02 

25th Percentile 22.48 

50th Percentile 41.28 

75th Percentile 99.53 

Standard Deviation 116.27 

Waste Quantity: Mean 61.25 

50th Percentile 21.97 

Standard Deviation 102.88 

Production Quantity: Mean 346.05 

50th Percentile 250 

Standard Deviation 321.47 

Waste Ratio Mean 0.86 

50th Percentile 0.09 

Standard Deviation 5.00 

Notes:  

● Statistics based on 200,717 well/year measurements 

○ Observations were dropped if total waste, production, or waste ratio exceeded 

the 99th percentile 
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Appendix E 

Summary Statistics and Graphical Representation of Bottom Quartile and IQR Industry 

Level Waste Ratios 

 

Summary Statistics of Industry Level Waste Ratios: Bottom Quartile vs IQR 

Ho: mean = 0          Ha: mean = 0  
*mean = bottom quartile average annual waste ratio - IQR average annual waste ratio 

Statistic Value 

t-statistic 3.259 

df 27 

obs 28 

95% confidence interval 0.083 to 0.365 
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Appendix F 

Summary Statistics and Graphical Representation of Upper Quartile and IQR Industry 

Level Waste Ratios 

 

 

 

Summary Statistics of Industry Level Waste Ratios: Upper Quartile vs IQR 

Ho: mean = 0          Ha: mean = 0  

*mean = upper quartile average annual waste ratio - IQR average annual waste 

ratio 

Statistic Value 

t-statistic 1.4017 

df 26 

obs 27 

95% confidence interval -0.6320 to 3.342 

Notes:  

● One outlier, the single observation in the 99th percentile, was removed for 

the difference in means regression 
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